
Beginning ScriptUI
ScriptUI is a module in the Adobe CS/CC family of applications (starting in CS2
in Photoshop, in CS3 for InDesign and other CS and CC applications) with which
dialogs can be added to scripts written in JavaScript. The module is included in
each version of the ExtendScript Toolkit, and dialogs written in it can be used
in scripts targeted at most CS/CC applications. This guide is for ScriptUI only: it
assumes that you are more or less proficient in JavaScript.

To my knowledge, the only documentation available on ScriptUI is a chapter
in JavaScript Tools Guide CC.pdf (in CS versions, the guide is called JavaScript
Tools Guide CSn.pdf, where n stands for a CS version), which is included in every
version of the ESTK and can be found in the Help menu (in CS3 and CS4, look in
the SDK submenu of the Help menu). That chapter – referred to in this text as
'the Tools Guide' – is a complete reference for the ScriptUI environment, but it is
a bit short on examples here and there. The present guide does not repeat the
full reference; rather, it should be seen as a companion to it.

The present guide is rather InDesign-centric, which is just because InDesign is
the only application that I write scripts for. When I read about ScriptUI problems
in other applications or when readers alert me to such problems, I make a note
of them, usually in sidenotes. You can trace these via the index.

A reference guide is available in the object-model viewer in the ESTK/
CS4 and later versions. Furthermore, Jongware's CS and CC object browsers
include a section on ScriptUI (see http://www.jongware.com/idjshelp.html).

Peter Kahrel

Revision 2.13, December 2016 (revision details at the back)
Please send comments, suggestions, corrections, etc. to kahrel@kahrel.plus.com

Contents
Hello world�� 1
Types of window��� 1

Dialog��� 1
Palette��� 2

Palettes inside functions�� 2
Differences across applications������������������������������������ 3
Differences accross operating systems����������������������������� 4

Adding controls�� 4
Getting started: An example��� 4

Groups and panels��� 6
Formatting the window frame������������������������������������� 9
Panel border styles�� 9

Creation properties and other properties������������������������� 10
Controls�� 10
statictext�� 10
edittext��� 11

Read-only��� 12
No-echo�� 12
Example: scrollable alert�������������������������������������� 13
Controlling edit fields��� 13

button�� 14
Push buttons�� 14
Responding to button presses�������������������������������� 15
Icon buttons�� 16
State-sensitive icon buttons����������������������������������� 17
Using application icons��������������������������������������� 18
Using InDesign's icons�� 19

checkbox��� 20
radiobutton��� 21

Make multiple groups act as one group����������������������� 23
listbox�� 24

Finding out which item is selected���������������������������� 25
Forcing a list selection��� 26
Finding out which item is selected in multi-select lists��������� 27
Processing lists�� 27
Finding items in a list�� 28
Using find() to make selections in a list������������������������ 28
Inserting items into a list�������������������������������������� 29
Keeping a list sorted�� 29

Moving list items (single-selection lists)����������������������� 30
Moving list items (multi-selection lists)������������������������ 31
Removing items from a list������������������������������������ 34
Removing items from a multi-selection list�������������������� 34
Selecting vs. revealing items���������������������������������� 34
Including images in a list�������������������������������������� 37
Adding checkmarks��� 37
Multi-column lists��� 38
Tables��� 39
Type-ahead lists: select while you type������������������������ 40
Processing long lists��� 43
Fixing display problems in listbox controls�������������������� 44

dropdownlist��� 45
Separators�� 46
Edit fields with dropdowns������������������������������������ 47
Creating lists on the fly�� 48

treeview��� 49
Images in treeviews��� 51
Expanding all nodes and their subnodes���������������������� 51
Creating a tree on the fly�������������������������������������� 54
Finding and highlighting items in a tree����������������������� 55
Moving items and nodes: processing treeviews��������������� 56
Removing items and nodes from treeviews�������������������� 59
Adding items to a treeview������������������������������������ 60
Writing a treeview as XML������������������������������������� 61

tabbedpanel��� 63
Vertical tabs��� 64

progressbar��� 66
Lists as progress indicators������������������������������������ 67
Counters as progress indicators������������������������������� 68

image��� 68
Resizing images��� 69

slider�� 69
scrollbar��� 70

The scrollbar’s value��� 71
stepdelta��� 72
jumpdelta��� 72
Scrolling panels and groups����������������������������������� 72

flashplayer�� 73

iii

Measurement control�� 74
Simulating keypresses��� 76
Adding shortcut keys to controls���������������������������������� 77
Control titles��� 78
Adding and removing controls dynamically����������������������� 79
Labelling controls�� 81
Finding windows�� 82

Finding controls��� 84
Closing windows��� 85
Fonts��� 86
Colours�� 88
Rules��� 89
Callbacks��� 91

Adding callbacks in loops�� 92
Event handlers��� 94

Monitoring the mouse��� 94
Determining which button is pressed������������������������� 94

Listening to the keyboard�� 95
Using the up and down arrow keys to change numerical data� 96
Selecting items in dropdowns using the keyboard������������ 97

Validating input�� 100
Three-state checkboxes: Sprites���������������������������������� 102
Size and location�� 105

Size��� 105
Location�� 106
Bounds��� 107
Maximum size�� 108
Minimum size��� 109
Orientation��� 109
Margins and spacing�� 110
alignment�� 111
alignChildren��� 112

Resizing windows��� 112
Coding styles: resource string and code based������������������� 114

Resource string��� 115
Code-based object��� 116
Mixing styles�� 117

Creation properties�� 118
Setting the size of controls����������������������������������� 119

Displaying properties and methods������������������������������ 119
Resources��� 120

Blogs��� 121
Useful forum topics��� 122
Interactive dialog builders�������������������������������������� 123

Appendix 1: Embedding graphic files in a script������������������ 123
Appendix 2: ESTK resource icons��������������������������������� 126
Changes in CC�� 127
Changes in CC2015��� 128
Revision details – version 2.13������������������������������������ 130
Index�� 131

1

Hello world

Inevitably, the simplest window is one that prints a message on the screen. Here
is an example that displays a simple ScriptUI window, showing the bare basics
of a ScriptUI window:

var myWindow = new Window ("dialog");
	 var myMessage = myWindow.add ("statictext");
	 myMessage.text = "Hello, world!";
myWindow.show ();

The first line defines a new window of type dialog; the second line adds
a control to the window, here a statictext item; the third line sets the content
of the statictext control; the last line displays the window. To dismiss the dialog,
press the exit cross in the top right of the dialog. Later we'll see how to dismiss
dialogs more elegantly.

Types of window

There are two types of window: dialog and palette. You’re already familiar with
the difference between the two because they reflect the way that windows
behave in InDesign. A dialog remains visible as long as you interact with
it, and while it is visible you can’t do anything else. Examples are the Text
Frame Options and the Paragraph Rules dialogs: only after dismissing these
dialogs can you continue to work in InDesign. On the other hand, if a palette
is displayed on the screen you can continue to work in InDesign. For instance,
in InDesign’s UI you have the Paragraph and Character palettes (called ‘panels’
since CS4): you can work while these palettes are displayed. In other words,
dialogs are modal, palettes are not.

InDesign’s UI dialogs and palettes are visually distinct in that dialogs have
OK and Cancel buttons, while palettes do not. But this difference doesn’t
necessarily hold in ScriptUI: you can do a palette with OK and Cancel buttons if
you feel like it, and you could do a dialog without them (though that wouldn't
be a very useful dialog).

Dialog

The Hello World script creates a dialog-type window.

In fact, scriptUI has a third window type, window,
which appears to behave like a palette in many
ways. Windows, unlike palettes, have minimise
and maximise buttons. You don't see it used much
and I won't deal with them in this guide.

2

Palette

To create a palette-style window you need to specify the window as a palette
and you need to target a custom engine. The Hello World example can be
turned into a palette as follows:

#targetengine "session"; // not needed in Illustrator/AfterEffects

var myWindow = new Window ("palette");
	 var myMessage = myWindow.add ("statictext");
	 myMessage.text = "Hello, world!";
myWindow.show ();

The window displayed by this script looks exactly the same as the dialog-type
window. When you try both scripts, you'll see that while the palette is displayed
you can work in InDesign; but with the dialog displayed you can't do anything
until you dismiss it.

There is a small cosmetic difference between dialogs and palettes (in Windows,
anyway): dialogs have round corners and a larger close button, palettes have
straight corners and a smaller close button. This reflects the distinction in
InDesign's own windows: InDesign's dialog-type windows have rounded
corners but have no close button (Textframe Options, Paragraph Style Options,
etc.), while its palette-style windows have straight corners and do have a close
button (Find/Change, Convert URLs to Hyperlinks, etc.). Windows 10 makes
a similar difference though the close buttons look a bit different.

Finally, an important ‘feature’ of palettes in InDesign CS6 and earlier is that you
cannot use the Tab key to tab to a different control: Tab key presses just send
a tab to InDesign. This was fixed in CC.

Palettes inside functions

Palettes cannot be defined in a function. For example, the following code does
nothing:

main();

function main () {
	 var w = new Window ('palette');
	 var m = w.add ('statictext');
	 m.text = 'Hello, world!';
	 w.show();
}

In CS3 and CS4 you can use palettes only if
you run the script from the scripts panel. Once
run from there, you can run the script from the
ESTK. In CS5 and later, palettes can be run from
the ESTK from the first run. These limitations
are Windows only (I think).

The #targetengine directive is not needed in
Illustrator and AfterEffects.

Dialog	 Palette

3

Instead, the window variable must be set at the script’s top level. The rest of the
window can be defined inside a function:

var win = createWindow();
win.show();

function createWindow () {
	 var w = new Window ('palette');
	 var m = w.add ('statictext');
	 m.text = 'Hello, world!';
	 return w;
}

But it is possible to define a palette inside an anonymous function:

(function () {

	 function createWindow () {
		 var w = new Window ('palette');
		 var m = w.add ('statictext');
		 m.text = 'Hello, world!';
		 return w;
	 }

	 var win = createWindow();
	 win.show();
}());

Differences across applications

There are some differences in the behaviour and appearance of ScriptUI
windows in the different CS/CC applications. A substantial difference is that
palettes can't be used in Photoshop (but see Davide Barranca's blog for
a workaround; for links, see the resources on p. 121). There are considerable
cosmetic differences between the appearance of Photoshop CS6 dialogs and
ScriptUI dialogs when run in Photoshop CS6. In earlier versions, ScriptUI dialogs
were much closer to Photoshop’s native dialogs. In contrast, ScriptUI dialogs in
InDesign are look much the same as InDesign’s native dialogs.

There are also considerable differences in appearance in applications of the
same CS/CC version, but they are just cosmetic differences: the scripts behave
the same in every respect.

4

Differences accross operating systems

There are some differences in behaviour and appearance between ScriptUI
windows on Macs and Windows. These differences are relatively benign and are
pointed out throughout the text. And there are differences between Windows 7
and Windows 10 (I don't know about Windows 8, never used it.) In Windows 10,
list boxes don't work in CS6, and the close button shows as red only when you
mouse over it.

Adding controls

In the Hello World example we encountered our first control: statictext. This
type of control, as we saw earlier, just adds some text to a window. Though the
two-line method we used there (adding the control, then use a separate line to
add the text) is fine, it could also have been stated as follows:

var myMessage = myWindow.add ("statictext", undefined, "Hello, world!");

that is, writing the text's contents as a parameter of the .add() method.
undefined in this line is a placeholder for a parameter that we won't deal with
here, namely, the size and position of the text within the window or other type
of container (later we'll return to containers within a window).

Another way of formulating this is as follows:

var myMessage = myWindow.add ("statictext {text: 'Hello, world!'}");

using a so-called resource string (resource strings are dealt with more
extensively in the section "Resource string" on page 115). In what follows I'll
use any of the three methods.

Getting started: An example

Before going into the details of all other controls, we'll first construct a simple
script to illustrate the main elements of ScriptUI's window features. In discussing
this simple example you also see how you often go about constructing
a window, which in effect is like constructing most things: you first add the basic
things, then refine these to make it more manageable and to make it look better.
We'll create a script that asks a user for some input.

Text entry is done using the edittext control. To make sense of an edit field,
you need to add a prompt separately using a statictext control. Here's the first
attempt:

5

var myWindow = new Window ("dialog", "Form");
	 myWindow.add ("statictext", undefined, "Name:");
	 var myText = myWindow.add ("edittext");
myWindow.show ();

Note first that we added a title to the window ('Form'). (Titles are centred on
the Mac.) Also note that the edit field appears below its title Name, which is not
what we want. A window's default orientation is column. To change that to row,
we need to include a statement to that effect:

var myWindow = new Window ("dialog", "Form");
	 myWindow.orientation = "row";
	 myWindow.add ("statictext", undefined, "Name:");
	 var myText = myWindow.add ("edittext");
myWindow.show ();

The second line in the script sets the window's orientation. This looks a bit
better, but the edit field is too small. In addition, we would like to add some
default text:

var myWindow = new Window ("dialog", "Form");
	 myWindow.orientation = "row";
	 myWindow.add ("statictext", undefined, "Name:");
	 var myText = myWindow.add ("edittext", undefined, "John");
		 myText.characters = 30;
myWindow.show ();

You can set the width of an edittext control using its characters property. Later
we'll see other ways to size controls.

The dialog looks better now, but it would be useful if the edit field were
activated when the window is displayed so that the user needn't place the
cursor there. This is done by including a line myText.active = true;

var myWindow = new Window ("dialog", "Form");
	 myWindow.orientation = "row";
	 myWindow.add ("statictext", undefined, "Name:");
	 var myText = myWindow.add ("edittext", undefined, "John");
		 myText.characters = 30;
		 myText.active = true;
myWindow.show ();

Note: To make active work in CC you have to set it in a so-called callback:

For control titles, see also p. 78

6

var myWindow = new Window ("dialog", "Form");
	 myWindow.orientation = "row";
	 myWindow.add ("statictext", undefined, "Name:");
	 var myText = myWindow.add ("edittext", undefined, "John");
		 myText.characters = 30;
	 myWindow.onShow = function () {
		 myText.active = true;
	 }
myWindow.show ();

Now we want to add some buttons, in this case the usual OK and Cancel
buttons. We do this using the button control:

var myWindow = new Window ("dialog", "Form");
	 myWindow.orientation = "row";
	 myWindow.add ("statictext", undefined, "Name:");
	 var myText = myWindow.add ("edittext", undefined, "John");
		 myText.characters = 20;
		 myText.active = true;
	 myWindow.add ("button", undefined, "OK");
	 myWindow.add ("button", undefined, "Cancel");
myWindow.show ();

But this doesn't look right, we want the buttons laid out in a different way.

Groups and panels

Because we set the window's orientation to row, all items we add are placed
on the same row, but that's not what we want. To change this, we can group
items together using the ScriptUI items group and panel. These two function
the same in that they group items together, but differ in two ways: panels have
a border, groups don't; and the default orientation of a group is row, that of
a panel, column (panel borders can be changed in some applications; see "Panel
border styles" on page 9).

So what we want to do now is to create two groups: one with the statictext
and the edittext controls, the other with the two buttons. This can be done as
follows:

_index_active@ 5290

_idTOCAnchor-92

_ix_dest_orientation #panel 6_ix_dest_orientation #group 6

7

var myWindow = new Window ("dialog", "Form");
	 var myInputGroup = myWindow.add ("group");
		 myInputGroup.add ("statictext", undefined, "Name:");
		 var myText = myInputGroup.add ("edittext", undefined, "John");
			 myText.characters = 20;
			 myText.active = true;
	 var myButtonGroup = myWindow.add ("group");
		 myButtonGroup.alignment = "right";
		 myButtonGroup.add ("button", undefined, "OK");
		 myButtonGroup.add ("button", undefined, "Cancel");
myWindow.show ();

We defined two groups, myInputGroup and myButtonGroup. Note that we
deleted the line that sets the window's orientation because it's not needed
anymore: the window has just two items (the two groups), and since the
Window's default orientation is column, there's no need to state it. Similarly,
since the default orientation of groups is row, there's no need to set the
orientation in the groups. Note that we aligned the button group to the right of
the window using alignment – a small detail but I need it later on.

Groups (and panels) are good layout tools when you script windows. If used
well, your windows are easily adaptable. For instance, if you want the buttons
vertically aligned and to the right of the input group, all you need to do is add
two orientation statements – these are marked green in the following example:

var myWindow = new Window ("dialog", "Form");
	 myWindow.orientation = "row";
	 var myInputGroup = myWindow.add ("group");
		 myInputGroup.add ("statictext", undefined, "Name:");
		 var myText = myInputGroup.add ("edittext", undefined, "John");
		 myText.characters = 20;
		 myText.active = true;
	 var myButtonGroup = myWindow.add ("group");
		 myButtonGroup.orientation = "column";
		 myButtonGroup.add ("button", undefined, "OK");
		 myButtonGroup.add ("button", undefined, "Cancel");
myWindow.show ();

A final tweak might be to align the two groups vertically. To do this, add this line
to the script; just before or after the second line makes sense:

myWindow.alignChildren = "top";

The script's window is now displayed as shown on the right.

8

We'll decide that the window is good enough for our purposes, and now we
turn to the question of how to deal with the user's input and how to use that
input in the rest of the script. In this example, two things can happen: the user
clicks OK (which in this script corresponds to pressing Enter) or they can click
Cancel (which is the equivalent of pressing Escape). The window's behaviour is
this: if the user presses OK, the line myWindow.show( ) returns 1, if they press
Esc, that line returns 2. We capture this as follows:

if (myWindow.show () == 1)
	 var myName = myText.text;
else
	 exit ();

In this case we needn't check for Escape because there are just two options,
namely, OK and Cancel. So if the user didn't press OK they must have pressed
Cancel. Anyway, if OK was pressed we want to return to the script the contents
of the edittext control, which is myText.text. In conclusion, here is the whole
script, packed in a function as you would probably do:

var myName = myInput ();
// rest of the script

function myInput () 	{
	 var myWindow = new Window ("dialog", "Form");
		 var myInputGroup = myWindow.add ("group");
			 myInputGroup.add ("statictext", undefined, "Name:");
			 var myText = myInputGroup.add ("edittext", undefined, "John");
				 myText.characters = 20;
				 myText.active = true;
		 var myButtonGroup = myWindow.add ("group");
			 myButtonGroup.alignment = "right";
			 myButtonGroup.add ("button", undefined, "OK");
			 myButtonGroup.add ("button", undefined, "Cancel");
	 if (myWindow.show () == 1) {
		 return myText.text;
	 }
	 exit ();
}

9

Formatting the window frame

There are some properties that determine the look of palettes and dialogs. You
can opt to suppress the close button on the frame (from now on I'll use w for
the Window variable instead of myWindow):

w = new Window ("dialog", "Example", undefined, {closeButton: false});
	 w.add ("statictext", undefined, "closebutton: f alse");
w.show ();

You can do borderless frames, too:

w = new Window ("dialog", undefined, undefined, {borderless: true});
	 w.add ("statictext", undefined, "borderless: t rue");
w.show ();

But these borderless frames are pretty minimalistic in that they are in fact just
grey panels. You can make them look better by adding a thin frame to them, as
follows:

w = new Window ("dialog", undefined, undefined, {borderless: true});
	 w.margins = [0,0,0,0];
	 myPanel = w.add ("panel");
	 myPanel.add ("statictext", undefined, "borderless: not quite true");
w.show ();

You'll notice, naturally, that the frame is not a border on the window but of the
panel.

Panel border styles

Panels are drawn with a black frame rule by default. In Photoshop and After
Effects (not in InDesign and Illustrator) the appearance of the frame rule can be
changed using the creation property borderStyle:

10

w = new Window ('dialog');
	 w.grp1 = w.add ('group');
		 w.grp1.add('panel', [0,0,100,100], 'None', {borderStyle:'none'});
		 w.grp1.add('panel', [0,0,100,100], 'Gray', {borderStyle:'gray'});
		 w.grp1.add('panel', [0,0,100,100], 'Black', {borderStyle:'black'});
		 w.grp1.add('panel', [0,0,100,100], 'White', {borderStyle:'white'});
	 w.grp2 = w.add ('group');
		 w.grp2.add('panel', [0,0,100,100], 'Etched', {borderStyle:'etched'});
		 w.grp2.add('panel', [0,0,100,100], 'Sunken', {borderStyle:'sunken'});
		 w.grp2.add('panel', [0,0,100,100], 'Raised', {borderStyle:'raised'});
w.show();

Now that we've seen the basics of windows, panels, and groups, we'll turn to
the building blocks in some detail.

Creation properties and other properties

Windows and their controls can be modified by two types of property: creation
properties and normal properties. Creation properties are so called becaused
they must be specified when the control is created; normal, non-creation,
properties can be set after a control was created.

There are numerous examples in this guide of both types. For instance, in the
example that prints "borderless: not quite true", above, {borderless: true} is
a creation property: the window's frame is set as borderless in the same line that
creates the window. It's not possible to set that property later on in the script.

In contrast, margins is not a creation property. A control's margins can be set
at any time. In the script, w.margins = [0,0,0,0] immediately follows the line at
which the window is created, but that's not necessary: the margins can be set
anywhere in the script after the line that creates the control.

Creation properties are listed separately in the Tools Guide, but can be found
in the object-model viewer as well. A control’s creation properties are shown if
you click its properties property. The screenshot shows the creation properties
of the edittext control.

Controls

statictext

We've already seen several examples of statictext and there will be many more
because this control is used a lot in ScriptUI windows. statictext controls are

Displaying creation properties

11

1-line controls by default, but multi-line texts are possible when the control is
created using the multiline creation property:

var w = new Window('dialog');
	 w.add ('statictext', [0,0,200,50], 'One\rTwo', {multiline: true});
w.show();

Static text can be aligned left, right, or centre. This too must be set as a creation
property, but there has always been something wrong with that. The only way
you can get that to work (on Windows, anyway) is to use a so-called resource
string for the control:

var w = new Window('dialog');
 w.add ('statictext {text: "Left", characters: 20, justify: "left"}');
 w.add ('statictext {text: "Centre", characters: 20, justify: "center"}');
 w.add ('statictext {text: "Right", characters: 20, justify: "right"}');
w.show();

The characters property is used to set the control’s width, and justify to set its
alignment.

The contents of statictext controls can be changed dynamically; see pp. 15
and 16 for an example.

edittext

This control too we've seen in the example given above. It is used to get input
from the user. By default, the control is just one line high and you can enter just
one line of text. A useful creation property is multiline, which allows you to add
more than one line:

var w = new Window ("dialog", "Multiline");
	 var myText = w.add ("edittext", [0, 0, 150, 70], " ", {multiline: true});
	 myText.text = "Line 1\rLine 2\rLine 3\rLine 4\rLine 5\rLine 6\r";
	 myText.active = true;
w.show ();

In the screenshot we've added a few lines. As you can see, we specified the
size of the control in the second argument position ([0, 0, 150, 70]) – these
dimensions are left, top, width, and height. (Note that these coordinates differ
from those of InDesign's geometricBounds, which are top, left, bottom, right.)
When more text is entered than fits the control, a scrollbar is added by default.
To disable the scrollbar, use the creation property scrolling:

12

var myText = w.add ("edittext", [0, 0, 150, 70], " ", {multiline: true, scrolling: false});

Although the control is called edittext, its edit possibilities are very limited
when you target InDesign (Photoshop and the ESTK itself don’t have this
problem). You can't cut and paste using keyboard shortcuts (Ctrl+C and Ctrl+V
on Windows) though you can right-click in the edit window and use Copy and
Paste from the context menu.

The Enter/Return key works as expected only in CS6 and later but you have to
enable it using the creation property wantReturn, as in the following example:

var myText = w.add ("edittext", [0, 0, 150, 70], " ", {multiline: true, wantReturn: true})

A problem in Windows is that if the script preselects some text, sometimes that
text is not displayed correctly. Take this script:

var w = new Window ("dialog");
	 var e = w.add ("edittext", undefined, "abcdefghijklmnopqrstuvwxyz");
	 e.active = true;
w.show();

As you can see, the text field is sized correctly but the text is not fitted to the
box. To remedy this, add the line highlighted in green:

w = new Window ("dialog");
	 e = w.add ("edittext", undefined, "abcdefghijklmnopqrstuvwxyz");
	 w.layout.layout();
	 e.active = true; // this line must follow w.layout.layout()
w.show();

We'll not go into the details of layout() here, but will return to it later.

The alignment/justification of edittext controls can be set in the same way (and
with the same quirks) as that of statictext controls.

Read-only

An edittext's readonly property can be set so that you can't enter text in it. You
can however copy the text and the control's content is accessible to the rest of
the script. This is a creation property and must applied as shown in the script
below.

No-echo

Setting an edittext's noecho property makes the text unreadable by replacing
it with dots. This type of field is often used to mask what a user enters, for

In versions older than CS6, adding new
lines in an edittext control is a problem:
you can’t use the Enter/Return key. In CS3
it was more or less fine, but in CS4, 5, and
5.5 it’s hopeless. The only thing you can do
pre-CS6 is to create a button which, when
pressed, adds \r at the insertion point.

13

example, when asking for a password. Though you can't read the text, it is
accessible to the script via the control's text property.

var w = new Window ('dialog {alignChildren: "fill"}');
	 w.add ('edittext', undefined, 'Normal');
	 w.add ('edittext', undefined, 'Read only', {readonly: true});
	 w.add ('edittext', undefined, 'No echo', {noecho: true});
w.show();

Example: scrollable alert

You can have a script display text, but InDesign's native alert() is a bit limited in
that it's not good at handling large amounts of text. It’s not so difficult, however,
to write your own display method so that you get a scrollable window. An
additional advantage is that you can copy text out of that window. Here is the
script, which I use a lot myself.

// create an example array
array = [];
for (i = 0; i < 150; i++)
	 array.push ("Line " + String (i));
alert_scroll ("Example", array);

function alert_scroll (title, input)	 // string, string/array
	 {
	 // if input is an array, convert it to a string
	 if (input instanceof Array)
		 input = input.join ("\r");
	 var w = new Window ("dialog", title);
	 var list = w.add ("edittext", undefined, input, {multiline: true, scrolling: true});
	 // the list should not be taller than the maximum possible height of the window
	 list.maximumSize.height = w.maximumSize.height - 100;
	 list.minimumSize.width = 150;
	 w.add ("button", undefined, "Close", {name: "ok"});
	 w.show ();
	 }

This function has one drawback: when you input large amounts of text or a big
array, it takes a while to display it.

Controlling edit fields

Controls of type edittext are the only type of input in ScriptUI. There are no
special controls for numbers, measurement units, etc. If you want input controls

14

for numbers and measurements, you'll have to write them yourself (see p. 74
for an example of a script for a measurement control). But though the edit field
is text only, ScriptUI provides several tools to make the edittext control more
flexible so that you can create your own numerical and measurement controls.

The section on event listeners gives an example of how to increment and
decrement numerical values using the up and down arrow keys. Bob Stucky's
scripts (see http://www.creativescripting.net/freeStuff/ScriptUI_Validation.zip)
provide more examples of measurement input and field validation. See also the
section on validation (p. 100), which borrows from those scripts.

button

Push buttons

There are various types of button. Earlier we saw the standard push-buttons OK
and Cancel, which are often used in windows:

var w = new Window ("dialog");
	 w.add ("button", undefined, "OK");
	 w.add ("button", undefined, "Cancel");
w.show ();

By default, an OK button responds to pressing the Enter key, a Cancel button to
the Escape key. But these buttons show this behaviour only when the button's
text is OK or Cancel. The Tools Guide therefore recommends to include the
creation property name: "ok" to ensure that OK buttons behave appropriately
in localised versions of InDesign or when you want to use some text for a button
other than OK:

var w = new Window ("dialog");
	 w.add ("button", undefined, "Yes", {name: "ok"});
	 w.add ("button", undefined, "No", {name: "cancel"});
w.show ();

In this example, the Yes button behaves like an OK button and the No button
like a Cancel button. (The name property can also be used for finding buttons
and other controls in windows; see "Finding controls" on page 84 for
examples and discussion.)

To create more than one line of text in a button, use \n as a separator (\r doesn't
work on Windows):

w.add ("button", undefined, "Line 1\nLine 2");

http://www.creativescripting.net/freeStuff/ScriptUI_Validation.zip

15

Responding to button presses

The behaviour of buttons other than OK and Cancel must be coded explicitely.
You do this with a so-called callback, in this case onClick. Here is an example:

var w = new Window ("dialog");
	 var e = w.add ("edittext", undefined, "Abcdefg");
	 var convert_button = w.add ("button", undefined, "Convert to upper case");
	 w.add ("button", undefined, "OK");

		 convert_button.onClick = function () {e.text = e.text.toUpperCase();}

w.show ();

Clicking Convert to upper case converts the text in the edit field to upper
case. This is a simple example, but the functions called by onClick can be of any
complexity. (There are several other types of callback, which we will deal with
later.)

Callbacks such as onClick can be combined with other callbacks in one
statement. The following script displays a small panel that we can use to check
the status of the state of the No break attribute.

16

#targetengine miscellaneous;
var w = new Window ('palette')
	 w.nobreak = w.add ('statictext {text: "No break: ", characters: 10, justify: "center"}');
	 w.button = w.add ('button {text: "Update"}');
	
	 function updateStatus() {
		 var state = ' ';
		 if (app.selection.length > 0) {
			 var str = app.selection[0].insertionPoints.everyItem().noBreak.join();
			 if (str.indexOf ('false') > -1 && str.indexOf ('true') > -1) {
				 state = '0/1';
			 } else if (str.indexOf ('false') > -1) {
				 state = '0';
			 } else {
				 state = '1';
			 }
		 }
		 w.nobreak.text = 'No break: ' + state;
	 }

	 w.onShow = w.button.onClick = updateStatus;
	
w.show();

The state of No break is checked by the function updateStatus(), which is
invoked when the window is first drawn (w.onShow) and when the Update
button is pressed (w.button.onClick). Note how the onShow and onClick
callbacks are stacked.

The script uses just one statictext control which is updated every time the
Update button is clicked. (Later, in the section on finding windows, we'll redo
this script as a version that updates automatically; see pp. 82 and 102)

Icon buttons

Apart from these standard push buttons you can use icon buttons. These display
not text such as OK but an image. The image should be in PNG, IDRC, or JPEG
format. The following format is used:

w.add ("iconbutton", undefined, File (myFile));

This adds a button which is like a pushbutton with an image instead of text
(button a in the screenshot). Buttons can be added as toolbuttons too, so that
only the image is shown, not the button itself (button b). Finally, buttons can be

17

made to toggle; buttons c and d in the screenshot are toggling toolbuttons: c is
not pressed, d is. Here is the code:

var w = new Window ("dialog");
	 w.orientation = "row";
	 var f = File ("/d/test/icon.png")
	 w.add ("iconbutton", undefined, f);	 // a
	 w.add ("iconbutton", undefined, f, {style: "toolbutton"});	// b
	 var t1 = w.add ("iconbutton", undefined, f, {style: "toolbutton", toggle: true});	 // c

	 var t2 = w.add ("iconbutton", undefined, f, {style: "toolbutton", toggle: true});	 // d

	 t2.value = true;
w.show ();

Examples of toggling toolbuttons in InDesign's interface can be found in
the Text and GREP tabs of the Find/Change dialog: the buttons to determine
whether or not to include footnotes, master pages, etc. in the search. The state
of a toggle button is off by default, but can be enabled by setting its value
property to true, as in the example, above. This property is used when you test
the state of a toggling icon button: if (t1.value == true).

The creation properties style and toggle are meaningful only if used for icon
buttons; they have no effect when included with normal buttons.

It's good practice to allow for the possibility that an icon file can't be found, e.g
by adding a fallback:

var f = File ("/d/test/icon.idrc");
try {
	 var b = w.add ("iconbutton", undefined, f)
} catch (_) {
	 var b = w.add ("button", undefined, "@")
}

This code tries to create an icon button using "icon.idrc", and if the icon can't be
found, a normal button is added with the text @.

The best way to deal with icons is to embed them in the script. Appendix 1
outlines this method.

State-sensitive icon buttons

Icon buttons can be made mouse-sensitive by defining a list of images rather
than a single one. They must be defined as a parameter of ScriptUI's image
object. Here is an example:

a b c d

18

var dir = "/d/scriptui/fig/";
var icons = {a: File(dir+"icon-a.png"), b: File(dir+"icon-b.png"),
					 c: File(dir+"icon-c.png"), d: File(dir+"icon-d.png")}

var w = new Window("dialog");
	 b = w.add ("iconbutton", undefined, ScriptUI.newImage (icons.a, icons.b, icons.c, icons.d));
w.show();

The first icon in the list (here, icon.a) is the default and is shown when the
window is drawn. The third one, (c), becomes visible when you click the button;
the last one, (d), is activated on mouse over. The second button, (b), is displayed
when you disable it with a line such as b.enabled = false.

Using application icons

A tantalising feature of ScriptUI is its ability to use application icons in its
windows. I say ‘tantalising’ because this feature is hopelessly undocumented:
just one remark in the Tools Guide, no further examples or overviews of the
resource names. This is a shame, because access to system resources means that
you don't have to worry about the presence of icons: they must be there since
the application is there.

Here is an example from Photoshop:

#target photoshop;
var w = new Window ("dialog");
	 w.orientation = "row";
	 w.add ("iconbutton", undefined, "Step1Icon");
	 w.add ("iconbutton", undefined, "Step2Icon");
	 w.add ("iconbutton", undefined, "Step3Icon");
	 w.add ("iconbutton", undefined, "Step4Icon");
	 w.add ("iconbutton", undefined, "SourceFolderIcon");
	 w.add ("iconbutton", undefined, "DestinationFolderIcon");
w.show();

There must be many more, but thus far the names of the resource icons remain
a well-guarded secret. More luck with the ESTK's icons. The following script
shows a few icons (a longer list is in the appendix):

b.enabled = false;

Default	 Click	 Roll over

19

#target estoolkit;
w = new Window ("dialog"); w.orientation = "row";
	 w.add("iconbutton", undefined, "#Enumeration");
	 w.add("iconbutton", undefined, "#Class");
	 w.add("iconbutton", undefined, "#Method");
	 w.add("iconbutton", undefined, "#PropertyRO");
	 w.add("iconbutton", undefined, "#PropertyRW");
	 w.add("iconbutton", undefined, "SystemQueryIcon");
	 w.add("iconbutton", undefined, "SystemStopIcon");
	 w.add("iconbutton", undefined, "SystemExpand");
	 w.add("iconbutton", undefined, "SystemCollapse");
	 w.add("iconbutton", undefined, "#FolderOpened");
w.show();

Using InDesign's icons

From CS5, InDesign takes a different approach in that it stores its icons as
graphic files. They are stored in InDesign's subfolders under Adobe InDesign
CSn/Plug-Ins (or CC, CC 2014, etc.) (PC) and Applications/Adobe InDesign
CSn/Adobe InDesign CS6.app (Mac), which contains several subfolders, which
in turn contain subfolders. The subfolders called idrc_PNGA and idrc_PNGR
contain several icons. (Thanks to Dirk Becker for pointing this out.) These two
folders contain the same icons but their colour is a bit different: InDesign uses
these two versions of each icon to show the difference when you mouse over
them.

The icon files have the file extension .idrc but they’re standard PNG files which
ScriptUI has no difficulty reading (but Photoshop can’t read them). You could in
principle write a script that uses InDesign's icons from InDesign's icon folders,
but unfortunately InDesign's folder structures on Mac and PC are different and
it's a bit of a hassle reliably to find the icons. It’s easiest and safest to find the
icon, create a resource folder on your (or your client’s) computer, and keep
the icons there; better yet, embed the icons in the scripts (see "Appendix 1:
Embedding graphic files in a script"). You can create a catalogue of InDesign’s
icons using this script.

But a simpler method for using InDesign’s icons is simply to make a screenshot
of that an icon and cut it to the correct size. This is possible if you’re not
interested in the transparency that InDesign’s icons offers or the different
colours that you can use for the different states of icons (default, mouse over,
click). And naturally, from CC, you can set the interface colour of CC applications.

http://www.kahrel.plus.com/indesign/icon_catalogue.html

20

Finally, it may be useful to add here that a window, group, or panel can be
populated with buttons in a loop. See "Adding callbacks in loops" on page 92
for an example.

checkbox

Here is an example of a window with some checkboxes. Optionally you can
tick any of the boxes when the window is displayed by setting the their value
property to true:

var w = new Window ("dialog");
	 var check1 = w.add ("checkbox", undefined, "Prefer white");
	 var check2 = w.add ("checkbox", undefined, "Prefer black and white");
	 check1.value = true;
w.show ();

Here we see another window layout default: within a container, items are
centred horizontally. This can be changed with the alignChildren property:

var w = new Window ("dialog");
	 w.alignChildren = "left";
	 var check1 = w.add ("checkbox", undefined, "Prefer white");
	 var check2 = w.add ("checkbox", undefined, "Prefer black and white");
	 check1.value = true;
w.show ();

Note that in CS6 and earlier, the text label is much too close to the checkbox.
The only way to do something about that is to add a space. But if you add
a normal space, the end of the text gets chopped off (see the second checkbox
in the following screenshot). To fix it, you need to add a non-breaking space
(\u00A0); the effect can be seen in the third line.

var w = new Window ("dialog");
	 w.alignChildren = "left";
	 w.add ("checkbox", undefined, "Prefer mixed");
	 w.add ("checkbox", undefined, " Prefer mixed ");
	 w.add ("checkbox", undefined, "\u00A0Prefer mixed");
w.show ();

In CS5 and CS6, the \u00A0 should be added at the beginning of the label;
in CS4, at the end. This is a problem of InDesign and the ESTK on Windows in
checkboxes and radiobuttons only. For InDesign, this problem was fixed in CC;
in Photoshop and all CS apps on Macs the problem never existed.

CS6 and earlier From CC

21

You check whether a checkbox was ticked by comparing its value property:

if (check1.value == true)
	 return whatever

ScriptUI knows only two-state checkboxes. For three-state checkboxes, see
p. 102.

radiobutton

Radio buttons are like checkboxes, but whereas you can tick all checkboxes
in a container (a window, panel, group, or tabbed panel), in a container with
radiobuttons only one of the buttons can be selected. Here is an example of
a window with some radio buttons.

var w = new Window ("dialog");
	 w.alignChildren = "left";
	 var radio1 = w.add ("radiobutton", undefined, "Prefer white");
	 var radio2 = w.add ("radiobutton", undefined, "Prefer black and white");
	 radio1.value = true;
w.show ();

To determine which item in a radiobutton group is selected, you have to check
all buttons until you hit on one whose value is true. If you have just two buttons,
as in the example, that's easy:

if (radio1.value == true)
	 // radio1 selected
else
	 // radio2 selected

But radio buttons will typically be grouped together in a group or a panel, in
which case you can cycle through the panel's children, which is an array:

22

var w = new Window ("dialog");
	 var radio_group = w.add ("panel");
		 radio_group.alignChildren = "left";
		 radio_group.add ("radiobutton", undefined, "InDesign");
		 radio_group.add ("radiobutton", undefined, "PDF");
		 radio_group.add ("radiobutton", undefined, "IDML");
		 radio_group.add ("radiobutton", undefined, "Text");
	 w.add ("button", undefined, "OK");
	 // set dialog defaults
	 radio_group.children[0].value = true;
	
	 function selected_rbutton (rbuttons)
		 {
		 for (var i = 0; i < rbuttons.children.length; i++)
			 if (rbuttons.children[i].value == true)
				 return rbuttons.children[i].text;
		 }
	
	 if (w.show () == 1)
		 alert ("You picked " + selected_rbutton (radio_group));

It is wise to set a default so that the dialog always returns a valid choice. If
you don't, you should take precautions against the possibility of returning an
undefined object.

The example script returns the text of the selected button, but you could also
return the button's index. In that case you could use that digit to pick an item
from an array. For instance, to return a file extension rather than the button's
text, you could replace the last four lines of the script with these:

				 return i;
		 }
	
	 if (w.show () == 1)
		 alert ("You picked " + ["indd", "pdf", "idml", "txt"][selected_rbutton (radio_group)]);

Now, if you select the first item, instead of returning InDesign, the script returns
indd.

The scope of a group of radiobuttons is the group or panel in which they're
defined. That means that if you want to use more than one group of radio
buttons, you should place them in different groups and/or panels.

23

Make multiple groups act as one group

The scope of radiobuttons is their container, usually a group or a panel. This
means that all radiobuttons are either laid out as a column or as a row. To
achieve a more flexible layout, you can create two groups, say, group A and
group B, add radiobuttons to them, and add an event listener to each group so
that if you click a button in A, all buttons in B are unmarked and the other way
around.

The following script adds two panels to a window, and adds five radio buttons
to each panel. The event listeners respond to mouse clicks. If you click
something in panel1, any button in panel2 is unmarked; and when you click
something in panel2, the marked button in panel1 is unmarked.

var w = new Window ("dialog");
	 w.orientation = "row";
	 var panel1 = w.add ("panel");
		 for (var i = 0; i < 5; i++) {panel1.add ("radiobutton", undefined, "Rb "+i);}
	 var panel2 = w.add ("panel");
		 for (var i = 0; i < 5; i++) {panel2.add ("radiobutton", undefined, "Rb "+i);}
	 panel1.children[0].value = true;
	
	 panel1.addEventListener ("click", function ()
		 {
		 for (var i = 0; i < panel2.children.length; i++)
			 panel2.children[i].value = false;
		 }
);
	
	 panel2.addEventListener ("click", function ()
		 {
		 for (var i = 0; i < panel1.children.length; i++)
			 panel1.children[i].value = false;
		 }
);
	
w.show();

You could combine the two panels in a group and define just one event listener
for that group, but that just complicates the event listener and assumes some
labels. We'll give that example in the section on labels.

From CC, .addEventListener() doesn't work in AfterEffects
and Illustrator. See https://forums.adobe.com/
message/5449261#5449261#5449261 and https://forums.
adobe.com/message/6173614#6173614.

https://forums.adobe.com/message/5449261#5449261#5449261
https://forums.adobe.com/message/5449261#5449261#5449261
https://forums.adobe.com/message/6173614#6173614
https://forums.adobe.com/message/6173614#6173614

24

listbox

A listbox adds a list to a window. The list can be created and filled with items
when the window is created, or the items can be added later. To create a list
when the window is created, include it as an array. Here is an example:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"]);
w.show ();

To create a list later, or to add items to an existing list, use the method illustrated
here:

var w = new Window ("dialog");
	 var myList = w.add ("listbox");
	 myList.add ("item", "one");
	 myList.add ("item", "two");
	 myList.add ("item", "three");
w.show ();

Select an item in the list by clicking it. By default, you can select just one item in
a listbox. To enable multiple selection, include a creation property:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "owo", "three"], {multiselect: true});
w.show ();

With multiselection enabled, you select items in the usual way: Ctrl/Cmd+click
adds individual items to a selection; Shift+click adds ranges.

To let the script select an item in the list when the window is displayed, say, the
first item, add this line:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"], {multiselect: true});
	 myList.selection = 0;
w.show ();

In the screenshot you see white space after the highlight in the first item, and
there looks to be an empty line at the foot of the the list. These spaces are
reserved by ScriptUI for placing scrollbars if necessary; see the screenshots of
later examples.

In a multiselect list, to select two or more items, write the indexes of the items
as an array:

In InDesign CS6 on Windows 10 you have to place the listbox in
a group or a panel, as follows:

var w = new Window ("dialog");
	 var gr = w.add ("group");
		 var myList = gr.add ("listbox", undefined, ["one", "two", "three"]);
w.show ();

Again, this is CS6 on Windows 10 only. This was noted by Werner
Perplies on HilfDirSelbst.

http://www.hilfdirselbst.ch/foren/ScriptUI_P549526.html

25

myList.selection = [0,2];

This selects items 0 and 2. To select a number of consecutive items you need to
list them all:

myList.selection = [0,1,2];

selects the first three items in myList.

Note: making selections in a list adds to any existing selection. For instance,
these lines:

myList.selection = [0,1];
myList.selection = [2];

select three items in the list. To avoid adding to a list’s existing selection, start
with making the selection null:

myList.selection = null;
myList.selection = [2];

Finding out which item is selected

In a single-select list, to determine which element was selected in a list, check
the selection property of the list:

mySelection = myList.selection;

To make visible what we do in our example script, we’ll use here another
callback, onChange, which responds to changes to a window’s control. We’ll
add a callback to our example script that monitors the listbox:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"]);

	 myList.onChange = function () {
		 $.writeln (myList.selection)
	 }

w.show ();

Run the script, click, say "two", and the script will print two in the console. This
looks like text, but when you try to test this with a line such as this one:

if (myList.selection == "two")

26

the result is false. The reason is that myList.selection is not text, but a listItem
object. Amend the script as follows:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"]);
	 myList.onChange = function () {$.writeln (myList.selection.constructor.name)}
w.show ();

Run the script again and click an item; the script now prints ListItem in the
console. To get the contents of the list item, query the object's text property:

if (myList.selection.text == "two")

Another useful property of list items is index, which – unsurprisingly – returns
the item's index within the list:

if (myList.selection.index == 2)

Note: before processing a list item, you should always check if anything is
selected in the list:

myList.onChange = function ()
	 {
	 if (myList.selection != null)
		 $.writeln (myList.selection.constructor.name);
	 }

This goes for the other types of list, too – dropdown and treeview, see below.
(The example may look odd in that onChange is triggered if you make
a selection in a list, but there are other situations where you access a list and
then it's necessary to check if any item is selected. It is therefore a good habit
always to check the list's selection status.)

Forcing a list selection

Even if you select a list item when the dialog is drawn, a user can deselect the
list's selection. To make sure that there is always a selection in a list, you can
monitor the list and select an item just in case the selection becomes null. My
collegue Vlad Vladila suggested the following function:

27

myList.onChange = function () {
	 if (myList.selection === null) {
		 myList.selection = myList.prevSel;
	 } else {
		 myList.prevSel = myList.selection.index;
	 }
}

Finding out which item is selected in multi-select lists

Selections in multi-select lists are a bit different in that they're arrays of list items.
We'll amend slightly a previous script:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"], {multiselect: true});
	 myList.onChange = function (){$.writeln (myList.selection.constructor.name)}
w.show ();

Run the script, select any two items, and the script prints Array in the console.
This is the case even if the selection consists of one item.

Processing lists

Lists are arrays of ListItems. They are processed a bit differently than standard
arrays. The following script processes a list simply by printing the text attribute
of each item:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"]);
	 var print = w.add ("button", undefined, "Print");
	
	 print.onClick = function ()
		 {
		 for (var i = 0; i < myList.items.length; i++)
			 $.writeln (myList.items[i].text);
		 }
	
w.show ();

As we saw earlier, in multi-select lists, selections are arrays. Lists themselves are
arrays, so selections are sub-arrays of lists. This can be shown by the following
script, which prints one and three in the console:

28

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three", "four"], {multiselect: true});
	 var print = w.add ("button", undefined, "Print selected items");
	
	 print.onClick = function ()
		 {
		 for (var i = 0; i < myList.selection.length; i++)
			 $.writeln (myList.selection[i].text);
		 }
	
w.show ();

Finding items in a list

To find an item in a list, use the find method:

var myItem = myList.find ("two");

This returns (a) an object of type ListItem if the item is found or (b) null if the
item is not in the list.

Using find() to make selections in a list

find() is a useful method to select items in a list because you can simply look for
the list items’ text:

var w = new Window ("dialog");
	 var numbers = ["one", "two", "three", "four", "five"]
	 var myList = w.add ("listbox", undefined, numbers, {multiselect: true});
	 myList.selection = myList.find("two");
	 myList.selection = myList.find("four");
w.show ();

Note that find() always returns just one item, even if there are more items with
the same name. If the possibility exists that there are two or more list items with
the same name and you want to find them all, then you can’t use find() and you
should iterate over the list and check each item’s name. The following script
does that: it selects all items whose name is cat:

29

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["cat", "dog", "cat", "mouse"], {multiselect: true});
	 var find = w.add ("button", undefined, "Select cats");
	
	 find.onClick = function ()
		 {
		 var found = [];
		 for (var i = 0; i < myList.items.length; i++)
			 if (myList.items[i].text == "cat")
				 found.push (i);
		 myList.selection = found;
		 }
	
w.show ();

Inserting items into a list

We saw earlier that items can be added to an existing list using the .add
("list") method. This always adds items at the end of the list. To add an item at
a particular place, include the target index. For instance, to add an item at the
beginning of a list, use this line:

myList.add ("item", "zero", 0);

To avoid creating duplicate entries in a list, you can use the find method to
check if the item is already in the list:

if (myList.find (myNewItem) == null)
	 myList.add ("item", myNewItem);

If you add an item to a list, the window is updated automatically, as shown by
this script:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, ["one", "two", "three"]);
	 var b = w.add ("button", undefined, "Add");
	 b.onClick = function () {myList.add ("item", "zero", 0)}
w.show ();

(As you can see, when the list grows out of its box, ScriptUI adds a scrollbar.)

Keeping a list sorted

Here is another example of list processing, this time inserting an item in a list
and keeping the list in alphabetical order. The script activates the input prompt,

30

so you can enter letters straight away. Notice that functions that process
a window control need not necessarily be defined within the block that defines
the window (i.e. between new Window and w.show()).

var w = new Window ("dialog");
	 var myList = w.add ("listbox", [0, 0, 50, 150], ["A", "K", "X"]);
	 var input = w.add ("edittext");
		 input.active = true;
	 var b = w.add ("button", undefined, "Insert", {name: "ok"});
	 b.onClick = function () {
		 insert_item (myList, input.text);
		 input.text = " ";
		 input.active = true;
		 }
w.show ();

function insert_item (list_obj, new_item)
	 {
	 if (list_obj.find (new_item) == null)
		 {
		 var stop = list_obj.items.length;
		 var i = 0;
		 while (i < stop && new_item > list_obj.items[i].text)
			 i++;
		 list_obj.add ("item", new_item, i);
		 }
	 }

The script's interface is a bit klunky, and as we named the Insert button ok it
responds to the Enter key – triggering the onClick handler – so it sits there just
catching Enter key presses. Later on we'll handle such situations more elegantly
by defining an event handler rather than using a button for this purpose.

Moving list items (single-selection lists)

To move items around in a list, we need two buttons: one to move the selected
list item up, the other to move it down. We also need a function to swap two
adjacent list items. Here is a simple example:

31

var w = new Window ("dialog", "Rearrange");
	 var list = w.add ("listbox", undefined, ["one", "two", "three", "four", "five"]);
	 list.selection = 1;
	 var up = w.add ("button", undefined, "Up");
	 var down = w.add ("button", undefined, "Down");

	 up.onClick = function ()
		 {
		 var n = list.selection.index;
		 if (n > 0)
			 {
			 swap (list.items [n-1], list.items [n]);
			 list.selection = n-1;
			 }
		 }

	 down.onClick = function ()
		 {
		 var n = list.selection.index;
		 if (n < list.items.length-1)
			 {
			 swap (list.items [n], list.items [n+1]);
			 list.selection = n+1;
			 }
		 }

	 function swap (x, y)
		 {
		 var temp = x.text;
		 x.text = y.text;
		 y.text = temp;
		 }

w.show ();

Actually, the list items themselves remain where they are: it's their text
properties that are swapped in the function swap().

Moving list items (multi-selection lists)

Moving a multiple selection is a bit more involved. In the previous selection we
saw that to move a list item is to swap its name with the preceding or following
item's name. The same approach is used to move a multiple selection (see the
script on the next page).

32

The up and down functions are almost the same. When we move selected items
up, we first check that the first selected item is not the first item in the list. We
then basically percolate the name of the item preceding the first selected item
down through the list until it follows the last selected item. We then need to
adjust the displayed selection. Moving items down follows the same principle.

Note that this method works correctly only on non-interrupted selections.
It could be made to work on any selection, but that’s a lot of extra coding.
The check if the selected items are contiguous is performed by the function
contiguous(), which is used together with the check if the selection can be
moved.

33

var w = new Window ("dialog", "Rearrange");
	 var list = w.add ("listbox", undefined, ["one", "two", "three", "four", "five"], {multiselect:
true});
	 var up = w.add ("button", undefined, "Up");
	 var down = w.add ("button", undefined, "Down");

	 up.onClick = function ()
		 {
		 var first = list.selection[0].index;
		 if (first == 0 || !contiguous (list.selection)) return;
		 var last = first+list.selection.length;
		 for (var i = first; i < last; i++)
			 swap (list.items [i-1], list.items [i]);
		 list.selection = null;
		 for (var i = first-1; i < last-1; i++)
			 list.selection = i;
		 }

	 down.onClick = function ()
		 {
		 var last = list.selection.pop().index;
		 if (last == list.items.length-1 || !contiguous (list.selection)) return;
		 var first = list.selection[0].index;
		 for (var i = last; i >= first; i--)
			 swap (list.items [i+1], list.items [i]);
		 list.selection = null;
		 for (var i = first+1; i <= last+1; i++)
			 list.selection = i;
		 }
	
	 function contiguous (sel){
		 return sel.length == (sel[sel.length-1].index - sel[0].index + 1);
	 }

	 function swap (x, y)
		 {
		 var temp = x.text;
		 x.text = y.text;
		 y.text = temp;
		 }
	
w.show ();

34

Removing items from a list

To remove an item from a list, use the .remove() method. For example, to
remove the third item from a list, use this:

myList.remove (myList.items[2]);

To remove an item by its name, you can use this method:

myList.remove (myList.find ("two"));

Removing items from a multi-selection list

To remove any selected items from a multi-selection list, delete the selected
items back to front:

var w = new Window ("dialog");
	 var list = w.add ("listbox", undefined, ["one", "two", "three", "four", "five"], {multiselect:
true});
	 var del = w.add ("button", undefined, "Delete selected items");

	 del.onClick = function ()
		 {
		 // remember which line is selected
		 var sel = list.selection[0].index;
		 for (var i = list.selection.length-1; i > -1; i--)
			 list.remove (list.selection[i]);
		 // select a line after deleting one or more items
		 if (sel > list.items.length-1)
			 list.selection = list.items.length-1;
		 else
			 list.selection = sel;
		 }
	
w.show();

Working out which line to select after deleting the selecting list items takes
more code than deleting the items themselves.

Selecting vs. revealing items

If a list is longer than its box, by default the beginning of that list is displayed, as
shown in screenshot (a). If the script preselects an item, the list scrolls to make
that selection visible, see (b). If you want to make a certain item visible without

35

selecting it, use revealItem(); in screenshot (c) an item is displayed (Line_50)
without selecting it. These three options are shown in the following script:

var w = new Window ("dialog");
	 var myList = w.add ("listbox");
	 for (var i = 0; i < 100; i++) {
		 myList.add ("item", "Line_" + String (i));
	 }

	 myList.preferredSize = [100,100];

	 w.onShow = function () {
		 //myList.selection = 50; // screenshot (b)
		 //myList.revealItem ("Line_50"); // screenshot (c)
	 }
w.show ();

As the script stands it displays window (a); uncomment myList.selection = 50;
and the script shows window (b); comment out that line again and uncomment
list.revealItem ("Item_50"); to show window (c).

There is a fourth possibility, but it's just a cosmetic variant: if you reveal an item
at the end of the list and then immediately reveal an earlier item, then that
earlier item is shown at the beginning of the list box. For example, with these
two lines:

myList.revealItem (list.items.length-1);
myList.revealItem ("Line_50");

the last item is selected (but you don't get to see it) and the item Line_50 is
shown at the beginning of the box.

Like most list functions, revealItem() can be used not only with a list item's
name, but also with a simple index:

list.revealItem (50);

Finally, revealItem() can be used to create a workaround for a display bug in
multiselect lists in InDesign before CC. The bug is shown by the following script:

(a)	 (b)	 (c)

Note: In CC and later, selecting or revealing list items must be
handled in an onShow callback. Another difference is that in CC,
the selected or revealed item appears at the top of the list box,
not at bottom as in CS6.

36

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, undefined, {multiselect: true});
	 for (var i = 0; i < 100; i++)
		 myList.add ("item", "Line_" + String (i))
	 myList.preferredSize = [100,200];
	
	 var b = w.add ("button", undefined, "Select");

	 b.onClick = function ()
		 {
		 myList.selection = [50, 51, 52, 53, 54];
		 }

w.show ();

The problem is clear. ScriptUI’s default behaviour is to scroll a list so that
a selected item is shown. But in multiselect lists in which more than two items
are selected, only the first two items in the selection are shown. To remedy
this and show all selected items, we do a revealItem() on the last item of the
selection. If that’s handled by a separate function then other processes can
make use of that same function:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, undefined, {multiselect: true});
	 for (var i = 0; i < 100; i++)
		 myList.add ("item", "Line_" + String (i))
	 myList.preferredSize = [100,200];
	
	 var b = w.add ("button", undefined, "Select");
	 b.onClick = function () {myList.selection = [50,51,52,53,54];}
	 myList.onChange = ShiftList;
	
	 function ShiftList ()
		 {
		 if (this.selection != null)
			 {
			 var idx = this.selection.pop().index;
			 if (idx < this.items.length)
				 this.revealItem (idx);
			 }
		 }
w.show ();

37

Including images in a list

List items can include images; here is an example:

var descriptions = ["Footnotes", "Masters", "Locked stories"];
var imgs = ["footnotes.idrc", "masters.idrc", "locked_stories.idrc"];
var w = new Window ("dialog");
	 var myList = w.add ("listbox");
	 for (var i = 0; i < descriptions.length; i++)
		 {
		 myList.add ("item", descriptions[i]);
		 myList.items[i].image = File ("~/Desktop/"+imgs[i])
		 }
w.show ();

The first two lines create arrays of image names and list-item texts; the for-loop
then adds list items and adds images to each item. (Like icons in icon buttons,
images should be in PNG, IDRC, or JPG format.)

Adding checkmarks

You can add checkmarks to list items by setting an item's checked property to
true. Example:

var w = new Window("dialog");
	 var list = w.add ("listbox", undefined, ["One", "Two", "Three", "Four"]);
	 list.items[1].checked = true;
w.show();

But as you see, the list is now no longer aligned properly. To fix this, set the
checked property of every item to false, which creates space for the check
marks:

var w = new Window("dialog");
	 var list = w.add ("listbox", undefined, ["One", "Two", "Three", "Four"]);
	 for (var i = 0; i < list.items.length; i++)
		 list.items[i].checked = false;
	 list.items[1].checked = true;
w.show();

38

Multi-column lists

Using multi-column lists you can create table-like structures, complete with
headings. Here is an example:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, " ",
			 {numberOfColumns: 3, showHeaders: true,
			 columnTitles: ["English", "French", "Dutch"]});
	 with (myList.add ("item", "One"))
		 {
		 subItems[0].text = "Un";
		 subItems[1].text = "Een";
		 }
	 with (myList.add ("item", "Two"))
		 {
		 subItems[0].text = "Deux";
		 subItems[1].text = "Twee";
		 }
	 with (myList.add ("item", "Three"))
		 {
		 subItems[0].text = "Trois";
		 subItems[1].text = "Drie";
		 }
w.show ();

The widths of the columns are determined automatically, but you can set them
by adding the creation property columnWidths. Any text that doesn't fit the
column is clipped, which is indicated by an ellipsis:

var w = new Window ("dialog");
	 var myList = w.add ("listbox", undefined, " ",
		 {numberOfColumns: 3, showHeaders: true,
			 columnTitles: ["English", "French", "Dutch"],
			 columnWidths: [30,30,100]});

Columns can be resized in the normal way: move the mouse cursor over
a column separator in the header row (the cursor changes to) and drag the
column to the desired width.

Images can be added to any of the items in any of the columns:

Note: like listboxes, in InDesign CS6 on
Windows 10, multi-column listboxes
should be placed in a group or a panel.

Note: Multi-column lists with column headers cause
Illustrator CS6 on the Mac to crash. CS5.5 and earlier
and CC and later are fine, as are all versions on
Windows. See this forum thread for details.

https://forums.adobe.com/thread/1978526#expires_in=86399988&token_type=bearer&access_token=eyJhbGciOiJSUzI1NiIsIng1dSI6Imltc19uYTEta2V5LTEuY2VyIn0.eyJpZCI6IjE0NDUxNzk2NzA5NzUtODYzY2RkMmUtODgxYi00NmUwLWJhNmItYmI0MDFlMjkxYjFkIiwibW9pIjoiN2U5MTYxNDQiLCJzY29wZSI6IkFkb2JlSUQsb3BlbmlkLGFkZGl0aW9uYWxfaW5mby5zY3JlZW5fbmFtZSx1cGRhdGVfcHJvZmlsZS5zY3JlZW5fbmFtZSIsImMiOiJPVUY2clFpcFVEMHlhaWtPYzFvV0t3PT0iLCJzdGF0ZSI6IiIsImFzIjoiaW1zLW5hMSIsImNyZWF0ZWRfYXQiOiIxNDQ1MTc5NjcwOTc1IiwiZXhwaXJlc19pbiI6Ijg2NDAwMDAwIiwidXNlcl9pZCI6IjM5QjgzQzk5NDIzQzExQTI5OTIwMTU3RkBBZG9iZUlEIiwiY2xpZW50X2lkIjoiZm9ydW1zMiIsInR5cGUiOiJhY2Nlc3NfdG9rZW4ifQ.ecnd3QzFr2Zm7BdMwFu20UYR1Qp92iBYAOsmiMkdZws0cMy62FlpHIVUHsdl3Rx_p5Tct3F0OpzpRexIhmwW4vaDzPhudYxvOZgjuxiGsulHFhj0ZuLAVX1eJ_cB4swWsBUhxwK0bQmL7CuIQie_N7ls0oGEmVz0nvV8gdLbJ3rw-SO9UhiuvK8Cd_eLz5vvCkh4SX34HW4OpkECQmp5e9p1sdl5oxOqWTS2CGFB5Mq06fNOxnvhca5svb7LPGBviR7ag-h74ClqwLK7HfFRWa9358owe4LL3PODJmOXP5ZlnlJfzcNYpgzp6uf0ErieC14faZ6E6ayuJGNgAZ8HqA

39

	 with (myList.add ("item", "One"))
		 {
		 subItems[0].text = "Un";
		 subItems[0].image = myFile_1;
		 subItems[1].text = "Een";
		 subItems[1].image = myFile_2;
		 }

Tables

Multi-column lists aren't really tables in that you can't select individual cells in
a row: whichever element you click always selects the whole row. But you can
fake a table by placing several list boxes next to each other without any space
between them. Here's an example:

var w = new Window("dialog");
	 var columns = w.add("group"); columns.spacing=0;
		 var header = {numberOfColumns: 1, showHeaders: true, columnWidths: [80]};
		 header.columnTitles = ["French"];
		 var col1 = columns.add ("listbox", undefined, ["Un","Deux","Trois"], header);
		 header.columnTitles = ["English"];
		 var col2 = columns.add ("listbox", undefined, ["One","Two","Three"], header);
		 header.columnTitles = ["Dutch"];
		 var col3 = columns.add ("listbox", undefined, ["Een","Twee","Drie"], header);
w.show();

Now you can select individual cells. In addition, you now have some control
over the appearance of individual columns (type, typesize, foreground and
background colour, etc.).

But you don't have any control over the format of the column headers. If you
want to change the appearnce of the headers, an altogether different script is
needed. It's more elaborate, but it looks much better.

40

var w = new Window("dialog");
	 w.spacing=0;
	 var headers = w.add("group"); headers.spacing=0;
		 headers.margins = [0,5,0,0];
		 var dimH=[0,0,100,20];
		 headers.add("statictext", dimH, "\u00A0French");
		 headers.add("statictext", dimH, "\u00A0English");
		 headers.add("statictext", dimH, "\u00A0Dutch");
		
		 headers.graphics.backgroundColor = w.graphics.newBrush(
			 w.graphics.BrushType.SOLID_COLOR,[0.7,0.7,0.7], 1);
		 for(var i = 0; i < headers.children.length; i++)
			 headers.children[i].graphics.font = ScriptUI.newFont ("Arial", 'BOLD', 12)

	 var columns = w.add("group"); columns.spacing=0;
		 var dimC=[0,0,100,200];
		 var col1 = columns.add ("listbox", dimC, ["Un","Deux","Trois"]);
		 var col2 = columns.add ("listbox", dimC, ["One","Two","Three"]);
		 var col3 = columns.add ("listbox", dimC, ["Een","Twee","Drie"]);

w.show();

The column headers are now statictext objects and are placed together in
a group so that we can add a background colour. So the background is applied
to the group, the font to the individual headers.

Type-ahead lists: select while you type

A useful type of list is the type-ahead list. An example of this type is InDesign's
Quick Apply panel. You see a list (or part of it) and a text-entry field. While
you type in the entry field, the list is filtered. Here is a script that mimics that
behaviour:

41

picked = type_ahead (['bat', 'bear', 'beaver', 'bee', 'cat', 'cats and dogs', 'dog', 'maggot', 'moose',
'moth', 'mouse']);

function type_ahead (animals) {
	 var w = new Window ('dialog {text: "Quick select", alignChildren: "fill"}');
		 var entry = w.add ('edittext {active: true}');
		 var list = w.add ('listbox', [0, 0, 150, 250], animals);
			 list.selection = 0;

		 entry.onChanging = function () {
			 var temp = this.text;
			 list.removeAll ();
			 for (var i = 0; i < animals.length; i++) {
				 if (animals[i].toLowerCase().indexOf (temp) == 0) {
					 list.add ('item', animals[i]);
				 }
			 }
			 if (list.items.length > 0){
				 list.selection = 0;
			 }
		 }
		
		 // We need the button to catch the Return/Enter key (CC and later)
		 w.add ('button', undefined, 'Ok', {name: 'ok'});
		
		 if (w.show () != 2){
			 return list.selection.text;
		 }
	 w.close();
}

We make use of the callback onChanging, which in this script monitors the
entry field. Each time we enter something in the entry field, the callback
function records what's there (var temp = this.text) and empties the list. It then
builds a new list by matching temp against the array we used originally to
display the list. If temp matches the beginning an array element, that element
is added to the list. Finally, if the list contains any entries (it's empty if you type
something that doesn't match array item), that item is selected.

Another way of filtering a list is by highlighting the items that match some text.
This is useful e.g. in long lists, which can be slow to rewrite (the above script
rectreates the list on every key press). Highlighting list items is much quicker,
and it is sometimes useful to keep the whole list visible. In addition, if you want

In an earlier version of this guide, this script used the line

entry.onChange = function () {w.close (1)}

instead of the Ok button to close the window and return
the selected list item. But unfortunately, that stopped
working in CC, even if you explicitely set the edittext
control's enterKeySignalsOnChange property. So if you
use CC or later you have to use the button as a dummy to
catch the Return/Enter key press.

42

to return more than one selected list item, then the following script is the one
to use (naturally, a combination of both scripts is possible too).

picked = type_ahead (['bat', 'bear', 'beaver', 'bee', 'cat', 'cats and dogs', 'dog', 'maggot', 'moose',
'moth', 'mouse']);

function type_ahead (animals) {
	 var selected, temp;
	 var w = new Window ('dialog {text: "Quick select", alignChildren: "fill"}');
		 var selected = [];
		 var entry = w.add ('edittext {active: true}');

		 var list = w.add ('listbox', [0,0,150,250], animals, {multiselect: true});

		 entry.onChanging = function () {
			 temp = this.text;
			 selected = [];
			 list.selection = null;
			 for (var i = 0; i < animals.length; i++) {
				 if (animals[i].toLowerCase().indexOf (temp) > -1) {
					 selected.push(i);
				 }
			 }
			 list.selection = selected;
		 }

	 w.add ('button {text: "Ok"}');

	 if (w.show () != 2){
		 selected = [];
		 for (var i = 0; i < list.selection.length; i++) {
			 selected.push (list.selection[i].text);
		 }
		 return selected;
	 }
	 w.close();
}

You can make the selecton of items sensitive to a regular expression by
replacing indexOf() with search(), and checking whether the user typed
a backslash:

43

		 entry.onChanging = function () {
			 temp = this.text.slice(-1) === '\\' ? this.text+'\\' : this.text;
			 selected = [];
			 list.selection = null;
			 for (var i = 0; i < animals.length; i++) {
				 if (animals[i].toLowerCase().search (temp) > -1) {
					 selected.push(i);
				 }
			 }
			 list.selection = selected;
		 }

Now if you enter d, both dogs and cats and dogs are selected; but when you
enter ^d, only dogs is highlighted. Sinilarly, when you enter \d, all items that
contain a digit are selected. The range of special symbols is restricted; you can
use ^ and $, but [and (cause a syntax error.

For yet other application of lists, see the section on progressbars, below.

Processing long lists

The list in the Quick select script on the previous page is processed very quickly
because it is so short. When you process long lists, however, the method used
in that script (delete the list’s items, then add new items) appears to slow down
the script considerably.

Another approach was suggested in the HilfDirSelbst forum: create a new list
and remove the old one, then assign the new list to the old list's variable:

http://www.hilfdirselbst.ch/gforum/gforum.cgi?post=501104#501104

44

entry.onChanging = function ()
	 {
	 var temp = entry.text,
		 tempArray = [];

	 for (var i = 0; i < array.length; i++)
		 if (array[i].toLowerCase().indexOf (temp) == 0)
			 tempArray.push (array[i]);

	 if (tempArray.length > 0)
		 {
		 // Create the new list with the same bounds as the one it will replace
		 tempList = w.add ("listbox", list.bounds, tempArray, {scrolling: true});
		 w.remove(list);
		 list = tempList;
		 list.selection = 0;
		 }
	 } // entry.onChanging

This method speeds up things dramatically.

Fixing display problems in listbox controls

From InDesign CC, lists aren't updated correctly if you change the contents of
the text of the list items but otherwise do nothing to disturb the list. Take this
script:

var w = new Window ('dialog');
	 w.list = w.add ('listbox', undefined, ['one', 'two', 'three']);
	 var b = w.add ('button {text: "Update"}');

	 b.onClick = function () {
		 for (var i = 0; i < w.list.items.length; i++) {
			 w.list.items[i].text = '0';
		 }
	 }

w.show();

The script displays a list with three items and a button. If you click the button
the script replaces the text strings in the list items with '0' – that, at least, is the
intention. But in CC and later (up to CC2015 at the moment of writing) that
doesn't work any longer. To update the list's display you need to click on it.

45

Clicking an a control to update it is not particularly good. But I was reminded
of some code that Marc Autret uses in his sprites script to update the display of
changed images. That method basically rattles the control, forcing ScriptUI to
update the control. That method comes down to resize the control and restore
its size immediately. Here is the script with the fix:

var w = new Window ('dialog');
	 w.list = w.add ('listbox', undefined, ['one', 'two', 'three']);

	 var b = w.add ('button {text: "Update"}');

	 b.onClick = function () {
		 for (var i = 0; i < w.list.items.length; i++) {
			 w.list.items[i].text = '0';
		 }
		 if (parseInt(app.version) > 8) {
			 refresh (w.list);
		 }
	 }

	 function refresh (control) {
		 var wh = control.size;
		 control.size = [1+wh[0], 1+wh[1]];
		 control.size = [wh[0], wh[1]];
	 }

w.show();

In Windows 10, listboxes (and therefore multi-column lists too) stopped working
in CS6 and earlier.

dropdownlist

Dropdown lists are similar to listbox lists in many respects; the main differences,
naturally, is that you can see one item at a time if the list is not selected and that
you can select just one item at a time. Apart from that, they are processed in
much the same way as list boxes. Here is an example:

var w = new Window ("dialog");
	 var myDropdown = w.add ("dropdownlist", undefined, ["one", "two", "three"]);
	 myDropdown.selection = 1;
w.show ();

Click the widget to expand the list, as shown in the second screenshot.

46

You can check which item is selected using the item's text property:

myChoice = myDropdown.selection.text;

You can also obtain the item's index:

myChoice = myDropdown.selection.index;

As with list boxes, in dropdown lists you can add images to list items:

myDropdown.items[0].image = myImage

In many implementations of drop-lists, if you type a letter, the first item in the
list that starts with that letter is selected in the lists's control without expanding
the list (InDesign's scripted dialog system works like that, for instance).
Unfortunately, ScriptUI's dropdown doesn't offer this, but that can be remedied
with an event listener; see the script on p. 97.

Separators

In dropdowns (but, strangely, not in listboxes) you can add separators to
a dropdown. Here’s an example:

var w = new Window ("dialog");
	 var myDropdown = w.add ("dropdownlist", undefined, ["one", "two", "-", "three"]);
	 myDropdown.selection = 0;
w.show ();

The separator counts as a list item, so myDropdown.items.length returns 4;
and if you want to preselect three in the above script, you'd use myDropdown.
selection = 3, because using 2 would do nothing – separators can't be selected.

Separators can be added after creating a dropdown, too, using the add method
and specifying an insertion point:

var w = new Window ("dialog");
	 var myDropdown = w.add ("dropdownlist", undefined, ["one", "two", "three"]);
	 myDropdown.add ("separator", undefined, 2)
	 myDropdown.selection = 0;
w.show ();

In this example the separator is added before the third item in the list. Note that
you must use undefined as a dummy argument: the insertion point must the
the third argument of the add() method.

47

Edit fields with dropdowns

A useful list type which isn't available in ScriptUI is one that can be called
‘editable dropdown’, or perhaps ‘edit field with a dropdown attached’. Examples
are the Find What field in the Find/Change dialog and most fields in the
Character panel: these are fields into which you can type something, but they
also have a widget which displays a dropdown when clicked so that you can
select something from it.

But this type of list can be mimicked in ScriptUI by combining an edittext
control and a dropdown list by placing one over the other using the stack
orientation. (I have been using this method for a while, and it was mentioned
by Harbs, too.) Before CC, though, the stack orientation behaves differently on
Macs and PCs: on a PC, "A stack B" places B on top of A, but on a Mac it places
B under A. So if you're using CS6 or earlier you need to check which operating
system you’re on. From CC, stack behaves the same on Macs and Windows
(using the Mac style).

The script below displays the dialog shown in the first screenshot: a dropdown
list and an editfield on top of it. The editfield is a bit narrower than the
dropdown so that it doesn't mask the dropdown's widget, and the widget is
the only thing you can see of the dropdown. When you press the widget, the
dropdown is shown. A value can be selected in the dropdown, which is then
placed in the edit field where it can be changed. We use an onChange callback
to monitor the dropdown.

48

 var names = ["Annabel", "Bertie", "Caroline", "Debbie", "Erica"];
var w = new Window ("dialog", "Place documents", undefined, {closeButton: false});
	 w.alignChildren = "right";
	 var main = w.add ("group");
		 main.add ("statictext", undefined, "Folder: ");
		 var group = main.add ("group {alignChildren: 'left', orientation: 'stack'}");
		 if (File.fs !== "Windows") {
			 var list = group.add ("dropdownlist", undefined, names);
			 var e = group.add ("edittext");
		 } else {
			 var e = group.add ("edittext");
			 var list = group.add ("dropdownlist", undefined, names);
		 }
		 e.text = names[0]; e.active = true;
		 list.preferredSize.width = 240;
		 e.preferredSize.width = 220; e.preferredSize.height = 20;
		
	 var buttons = w.add ("group")
		 buttons.add ("button", undefined, "OK");
		 buttons.add ("button", undefined, "Cancel");
		
	 list.onChange = function () {
		 e.text = list.selection.text;
		 e.active = true;
	 }
	
w.show ();

You can see how it works when you remove the stack orientation: the edittext
control and the dropdown list are then displayed separately.

Creating lists on the fly

In the examples given so far, we predefined lists in the form of an array (["one",
"two", "three"], ["Annabel", "Bertie", . . .]). Another way of creating a dropdown
is creating it on the fly. I've used this approach to present a list of styles that
includes paragraph style groups.

The following script uses a function (buildList()) recursively to create a list of
paragraph style names with their path names, so to speak. The list's format is
that of InDesign's format in the Table of Contents window.

49

function getParagraphStyle() {
	 var w, temp, styles;

	 function buildList (scope, list, str) {
		 styles = scope.paragraphStyles.everyItem().getElements();
		 for (var i = 0; i < styles.length; i++) {
			 temp = list.add ('item', styles[i].name + (str == ' ' ? ' ' : ' ('+str+')'));
			 temp.id = styles[i].id; // Add property so we can easily get a handle on the style later
		 }
		 for (var j = 0; j < scope.paragraphStyleGroups.length; j++) {
			 buildList (scope.paragraphStyleGroups[j], list, scope.paragraphStyleGroups[j].name+ (str == ' ' ? ' ' : ':') + str);
		 }
	 }

	 w = new Window ('dialog');
		 w.pstyles = w.add ('dropdownlist');
			 buildList (app.activeDocument, w.pstyles, ' ');
			 w.pstyles.remove (w.pstyles.items[0]); // Remove [No Paragraph]
			 w.pstyles.selection = 0;
		 w.ok = w.add ('button {text: "OK"}');

		 if (w.show () == 1){
			 return app.activeDocument.paragraphStyles.itemByID (w.pstyles.selection.id);
		 }
		 return null;
}

When buildList() dynamically creates the dropdown list, it adds the custom
property id (we could use any name: it's a custom, private, property), so that we
can later access the paragraph style. Because we deal with styles in groups, we
can't use the name of a style, so we use its id.

This approach can be used for other types of control as well, such as listboxes
and treeviews (see p. 54 for a similar example creating a tree).

treeview

Lists of type treeview create tree-like structures, much like, for instance, folder
trees that you see in file managers. Here is an example:

50

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 150, 150]);
	 var mammals = tree.add ("node", "Mammals");
		 mammals.add ("item", "cats");
		 mammals.add ("item", "dogs");
	 var insects = tree.add ("node", "Insects");
		 insects.add ("item", "ants");
		 insects.add ("item", "bees");
		 insects.add ("item", "flies");
	 mammals.expanded = true;
	 insects.expanded = true;
w.show ();

Nodes are collapsed by default (they are distinguished from items by the +
or − shown before them up to CS6, by little triangles in CC). To expand a node,
double-click it or single-click the plus that precedes it. To expand any node
when the window is drawn, use myNode.expanded = true as shown in the
example.

Nodes can be embedded under nodes to create multi-level trees. Here is an
example:

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 150, 250]);
	 var mammals = tree.add ("node", "Mammals");
		 mammals.cats = mammals.add ("node", "cats");
			 mammals.cats.add ("item", "tabbies");
			 mammals.cats.add ("item", "tiggers");
		 mammals.dogs = mammals.add ("node", "dogs");
			 mammals.dogs.add ("item", "terrier");
				 mammals.dogs.collies = mammals.dogs.add ("node", "colly");
				 mammals.dogs.collies.add ("item", "border");
				 mammals.dogs.collies.add ("item", "highland");
			 mammals.dogs.add ("item", "labrador");
	 var insects = tree.add ("node", "Insects");
		 insects.add ("item", "ants");
		 insects.add ("item", "bees");
		 insects.add ("item", "flies");
w.show();

InDesign up to CC InDesign from CC

51

Images in treeviews

As in lists, you can add an image to nodes and items, as in the following script:

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 150, 200]);
	 var folder_1 = tree.add ("node", "Folder 1");
		 folder_1.image = File ("/d/scriptui/folder_icon.idrc");
		 folder_1.add ("item", "File 1 1");
			 folder_1.items[0].image = File ("/d/scriptui/file_icon.idrc");
		 folder_1.add ("item", "File 1 2");
			 folder_1.items[1].image = File ("/d/scriptui/file_icon.idrc");
		 folder_1.add ("item", "File 1 3");
			 folder_1.items[2].image = File ("/d/scriptui/file_icon.idrc");
	 var folder_2 = tree.add ("node", "Folder 2");
		 folder_2.image = File ("/d/scriptui/folder_icon.idrc");
		 folder_2.add ("item", "File 2 1");
		 folder_2.add ("item", "File 2 2");
		 folder_2.add ("item", "File 2 3");
		 // another method to add the icons
		 for (var i = 0; i < folder_2.items.length; i++){
			 folder_2.items[i].image = File ("/d/scriptui/file_icon.idrc");
		 }
	 folder_1.expanded = true;
	 folder_2.expanded = true;
w.show ();

Expanding all nodes and their subnodes

In the scripts in the previous section, we expanded the two top-level nodes
simply by using these two statements:

mammals.expanded = true;
insects.expanded = true;

The expanded property expands the node to show just its items, but any
subnodes aren’t expanded. This expands the whole tree because each top-
level node contained just items, not any subnodes. What we need therefore is
a method of expanding all nodes when the script starts.

Another limitation of treeview nodes is that you can expand them just one level.
It's not possible, for instance, to double click a node (or Alt-click, or whatever) to
expand that node and all its subnodes. These two things – expanding a whole
tree when the dialog is first drawn and expanding nodes exhaustively when

52

they are double-clicked – can be handled by one function which is called in two
different ways: by an onShow() callback when the dialog is drawn and by an
event listener when a node is double-clicked.

The function expand_node() takes two parameters, a node and a boolean. The
onShow() function passes through the whole tree (the root node, so to speak),
so that the whole tree is expanded when the window is drawn. The script also
defines an onDoubleClick callback, which expands just the selected node.
(Kasyan Servetsky noted that if trees are expanded using this method and the
tree doesn't completely fit in the box, on Macs the top of the tree is displayed,
on Windows, the last part.)

The tree does show some unexpected behaviour: when a branch is fully
expanded and you double-click on it, that branch is collapsed even though
the double-click callback passes true as the state for all nodes, in other words,
‘expand’. It’s not clear to me why this happens. It has definitely something to do
with the callback, because if you leave out the function, double-click doesn’t do
anything at all. The function, by the way, doesn’t work very well in CC.

53

var w = new Window ('dialog');
	 var tree = w.add ('treeview', [0, 0, 150, 350]);
	 var mammals = tree.add ('node', 'Mammals');
		 mammals.cats = mammals.add ('node', 'cats');
			 mammals.cats.add ('item', 'tabbies');
			 mammals.cats.add ('item', 'tiggers');
		 mammals.dogs = mammals.add ('node', 'dogs');
			 mammals.dogs.add ('item', 'terrier');
				 mammals.dogs.collies = mammals.dogs.add ('node', 'colly');
				 mammals.dogs.collies.add ('item', 'border');
				 mammals.dogs.collies.add ('item', 'highland');
			 mammals.dogs.add ('item', 'labrador');
	 var insects = tree.add ('node', 'Insects');
		 insects.add ('item', 'ants');
		 insects.add ('item', 'bees');
		 insects.add ('item', 'flies');

	 tree.onDoubleClick = function () {
		 if (tree.selection.type == 'node'){
			 expand_node (tree.selection);
		 }
	 }

	 function expand_node (tree){
		 tree.expanded = true;
		 var branches = tree.items;
		 for (var i = 0; i < branches.length; i++) {
			 if (branches[i].type == 'node') {
				 expand_node (branches[i]);
			 }
		 }
	 }

	 w.onShow = function (){
		 expand_node (tree);
	 }

w.show ();

Without the onShow callback With the onShow callback

54

Creating a tree on the fly

In addition to predefining treeviews in a script, trees can be created dynamically
from some structure, e.g. paragraph styles in style groups. The following script is
an example.

function getParagraphStyle() {
	 var w, temp, style;
	
	 function buildTree (doc, tree) {
		 styles = doc.paragraphStyles.everyItem().getElements();
		 for (var i = 0; i < styles.length; i++) {
			 temp = tree.add ('item', styles[i].name);
			 temp.id = styles[i].id; // Add property so we can easily get a handle on the style later
		 }
		 for (var j = 0; j < doc.paragraphStyleGroups.length; j++) {
			 buildTree (doc.paragraphStyleGroups[j], tree.add ('node', doc.paragraphStyleGroups[j].name));
		 }
	 }

	 function expand_node (tree) { /* See p. 53 */}

 	 w = new Window ('dialog');
		 w.pstyles = w.add ('treeview', [0, 0, 250, 400]);
		 buildTree (app.activeDocument, w.pstyles);
		 w.pstyles.remove (w.pstyles.items[0]); // Remove [No Paragraph]
		 w.ok = w.add ('button {text: "OK", enabled: false}');
		
		 w.pstyles.onChange = function () {
			 if (w.pstyles.selection != null && w.pstyles.selection.type == 'node') {
				 w.pstyles.selection = null; // Non-terminal nodes should not be selectable
			 }
			 w.ok.enabled = w.pstyles.selection != null;
		 }
		
		 w.onShow = function () {
			 expand_node (w.pstyles);
		 }

	 if (w.show () == 1){
		 return app.activeDocument.paragraphStyles.itemByID (w.pstyles.selection.id);
	 }
	 return null;
}

55

The buildTree() function creates a tree that represents the paragraph-style
structure of the active document. This is the same document we used for the
script on p. 49 that creates a dropdownlist on the fly.

Finding and highlighting items in a tree

To find an item in a tree, we need to traverse the tree. The following script
defines a function find_item(), which is a traditional recursive function, very
similar to functions that traverse folders and XML structures. The function
returns an array, because the tree can contain more than one item with the
name we’re searching.

The callback defined for the Search button then expands the path of the found
item and highlights the item.

Strangely, in CS6 the first time you search an item you need to press Search
twice to highlight it. The first press expands the tree, the second press
highlights the item. Subsequent searches work fine.

In CC, the branch is expanded correctly, but the found item is not highlighted.
In addition, if you search for the last item in the tree, InDesign crashes (this is
the case up to and including CC 2015).

var w = new Window ('dialog');
	 var tree = w.add ('treeview', [0, 0, 150, 350]);
	 var mammals = tree.add ('node', 'Mammals');
		 mammals.cats = mammals.add ('node', 'cats');
			 mammals.cats.add ('item', 'tabbies');
			 mammals.cats.add ('item', 'tiggers');
		 mammals.dogs = mammals.add ('node', 'dogs');
			 mammals.dogs.add ('item', 'terrier');
				 mammals.dogs.collies = mammals.dogs.add ('node', 'colly');
				 mammals.dogs.collies.add ('item', 'border');
				 mammals.dogs.collies.add ('item', 'highland');
			 mammals.dogs.add ('item', 'labrador');
	 var insects = tree.add ('node', 'Insects');
		 insects.add ('item', 'ants');
		 insects.add ('item', 'bees');
		 insects.add ('item', 'flies');

	 var fgroup = w.add ('group {_: StaticText {text: "Find: "}}');
		 var srch = fgroup.add ('edittext {characters: 10}');

56

	 var search_button = w.add ('button {text: "Search"}');

	 search_button.onClick = function (){
		 var items = find_item (tree, [], srch.text);
		 if (items.length == 0) { // Nothing found
			 tree.selection = null;
			 return;
		 }
		 var item = items[0];
		 var temp = item; // store this so we can select it later
		 // Expand the full path
		 while (item.parent.constructor.name != 'TreeView') {
			 item.parent.expanded = true;
			 item = item.parent;
		 }
		 tree.selection = temp;
		 tree.active = true;
	 } // search_button.onClick

	 function find_item (tree, list, item){
		 var branches = tree.items;
		 for (var i = 0; i < branches.length; i++) {
			 if (branches[i].type == 'node') {
				 find_item (branches[i], list, item);
			 } else if (branches[i].text == item) {
				 list.push (branches[i]);
			 }
		 }
		 return list;
	 }

w.show ();

Moving items and nodes: processing treeviews

Moving items and nodes in a treeview isn’t as straightforward as moving items
in a listbox. We saw that in a listbox we don’t really move an item, but rather
simply exchange the text properties of the item to be moved and of that of an
adjacent item. But in a treeview that’s possible only if the selected thing and
the adjacent one are both items or if one of them is a node and the other one
an item. If however the selected thing and the adjacent one are both nodes,
then we really have to move the node. The following script, which is the result

57

of an exchange with Michel Pensas, who set the exchange in motion, illustrates
moving things around in a treeview.

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 150, 250]);
		 var mammals = tree.add ("node", "Mammals");
			 mammals.cats = mammals.add ("node", "cats");
				 mammals.cats.add ("item", "tabbies");
				 mammals.cats.add ("item", "tiggers");
			 mammals.dogs = mammals.add ("node", "dogs");
				 mammals.dogs.add ("item", "terrier");
				 mammals.dogs.collies = mammals.dogs.add ("node", "colly");
					 mammals.dogs.collies.add ("item", "border");
					 mammals.dogs.collies.add ("item", "highland");
				 mammals.dogs.add ("item", "labrador");
		 var insects = tree.add ("node", "Insects");
			 insects.add ("item", "ants");
			 insects.add ("item", "bees");
			 insects.add ("item", "flies");

	 up = w.add ("button", undefined, "Up");
	 up.onClick = MoveUp;

	 function MoveUp ()
		 {
		 if (tree.selection.index > 0)
			 {
			 var sel = tree.selection;
			 var previous = sel.parent.items[sel.index-1]
			 if (sel.type == "item" && previous.type == "item"){
				 swap (sel, previous); tree.selection = previous;
				 return;
			 }
			 if (sel.type == "node" && previous.type == "item"){
				 sel.parent.add ("item", previous.text, sel.index+1);
				 tree.remove (previous); // no need to select
				 return;
			 }
			 if (sel.type == "item" && previous.type == "node"){
				 tree.selection = sel.parent.add ("item", sel.text, sel.index-1);
				 tree.remove (sel);
				 return;
			 }

58

			 // When we get here we know that both items are nodes
			 var target = sel.parent.add ("node", sel.text, sel.index-1);
			 for (var i = 0; i < sel.items.length; i++)
				 copy_branch (sel.items[i], target);
			 tree.selection = target;
			 tree.remove(sel);
		 } // if (tree.
	 } // MoveUp

 	 function copy_branch (N, Ncopy)
		 {
		 var NewNode = Ncopy.add (N.type, N.text);
		 if (N.type == "node")
			 {
			 var kids = N.items;
			 for (var i = 0; i < kids.length; i++)
				 {
				 if (kids[i].type == "node")
					 copy_branch (kids[i], NewNode);
				 else
					 NewNode.add ("item", kids[i].text);
				 }
			 }
		 }

	 function swap (x, y){
		 var temp = x.text;
		 x.text = y.text;
		 y.text = temp;
		 }

	 w.show ();

The script moves items up, not down; moving down is just a slight variant. The
MoveUp function checks the types of the selected thing and, if the selected
thing’s index is bigger than 0, in other words, if it isn’t the first in the list, then it
looks at the selected thing and the immediately preceding thing.

1.	� If the selection and what precedes it are both items, then the script simply
swaps the text properties.

2.	� If the selection is a node and what precedes it is an item, we create a copy of
the preceding item below the node and delete the original.

59

3.	� If the selecion is an item and the thing above it is a node, then the script
creates a copy of the item above the node and deletes the item.

4.	� And finally it gets interesting: the last logical case is that both the selection
and what’s above it are nodes. The script creates a copy of the selected
node before the preceding node, then call the function copy_branch, which
copies	 all subnodes and items from the selected node to the copied node.
When that’s done, the selected node is deleted.

Note that in the MoveUp function the script always selects the copied item or
node. This must be written into the script: it doesn’t happen automatically. It’s
not really necessary, it’s just convenient in case you want to continue moving
the selected item.

Removing items and nodes from treeviews

Removing items from a treeview is similar to removing items from lists. If you
remove a node, all its children are deleted as well, so you may want to add a test
to prevent nodes from being deleted. In the following script a button is added
to the dialog which calls a function that removes an item only if that item is not
a node.

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 100, 150]);
		 var mammals = tree.add ("node", "Mammals");
			 mammals.add ("item", "cats");
			 mammals.add ("item", "dogs");
		 var insects = tree.add ("node", "Insects");
			 insects.add ("item", "ants");
			 insects.add ("item", "bees");
			 insects.add ("item", "flies");
		 mammals.expanded = true;
		 insects.expanded = true;
		
	 var remove_btn = w.add ("button", undefined, "Remove item");

	 remove_btn.onClick = function (){
		 if (tree.selection.type != "node")
			 tree.remove (tree.selection);
	 }
w.show ();

60

Another way of protecting nodes is to disable the delete button if a node is
selected. So instead of the single function in the above script, you could have
this code:

	 tree.onChange = function ()
		 {
		 if (tree.selection.type == "node")
			 remove_btn.enabled = false;
		 else
			 remove_btn.enabled = true;
		 }

	 remove_btn.onClick = function (){tree.remove (tree.selection);}

As you can see in the screenshot, when you select a node in the tree, the
Remove item button is disabled. There is therefore now no need to do any
checks in the function that deletes the item.

Adding items to a treeview

Adding items to a treeview is less straightforward than removing items. The
trouble is that you can’t use the index of items in the same way as in plain lists.
The reason is that each node creates its own set of indexes. The indexes in our
example tree are as follows:

Mammals	 0
	 cats	 0
	 dogs	 1
Insects	 1
	 ants	 0
	 bees	 1
	 flies	 2

Within the treeview, Mammals has index 0, Insects has index 1. Within Mammals,
cats is 0; within Insects, ants is 0. To insert an item you must therefore address
the correct parent node. Using the structure in our example, that can be done
as follows:

61

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 150, 150]);
	 var mammals = tree.add ("node", "Mammals");
		 mammals.add ("item", "cats");
		 mammals.add ("item", "dogs");
	 var insects = tree.add ("node", "Insects");
		 insects.add ("item", "ants");
		 insects.add ("item", "bees");
		 insects.add ("item", "flies");
	 mammals.expanded = true;
	 insects.expanded = true;
	
	 var insert_btn = w.add ("button", undefined, "Insert item");

	 insert_btn.onClick = function ()
		 {
		 tree.selection.parent.add ("item", "Reptiles", tree.selection.index);
		 }

w.show ();

Elements are added within their branch. If you select a node, the added element
is inserted at the level of that node but as an item, as shown in the screenshot
next to the script code. To insert that element as a node, you need to check the
current selection’s type. The following context-sensitive function inserts an
element of the correct type at each level:

	 insert_btn.onClick = function ()
		 {
		 tree.selection.parent.add (tree.selection.type, "Reptiles", tree.selection.index);
		 }

Writing a treeview as XML

It will be clear by now that any form of tree-processing will have to be done by
recursive functions. The expand_all and move_up functions shown earlier are
examples. Another example would be to write out a treeview as an XML file.
Here is an example – the panel on the right shows the script’s output:

In CC and later, adding an item collapses the selection's parent. To fix
that, add these two lines so that the callback looks as follows:

insert_btn.onClick = function () {
	 tree.selection.parent.add ("item", "Reptiles", tree.selection.index);
	 tree.selection.parent.expanded = false;
	 tree.selection.parent.expanded = true;
}

62

var w = new Window ("dialog");
	 var tree = w.add ("treeview", [0, 0, 150, 250]);
		 var mammals = tree.add ("node", "Mammals");
			 mammals.cats = mammals.add ("node", "cats");
				 mammals.cats.add ("item", "tabbies"); mammals.cats.add ("item", "tiggers");
			 mammals.dogs = mammals.add ("node", "dogs");
				 mammals.dogs.add ("item", "terrier");
					 mammals.dogs.collies = mammals.dogs.add ("node", "colly");
					 mammals.dogs.collies.add ("item", "border");
					 mammals.dogs.collies.add ("item", "highland");
				 mammals.dogs.add ("item", "labrador");
		 var insects = tree.add ("node", "Insects");
			 insects.add ("item", "ants"); insects.add ("item", "bees"); insects.add ("item", "flies");

		 xml = w.add ("button", undefined, "Write XML");
		 xml.onClick = exportXML;

	 function exportXML (){
		 $.writeln ('<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\r<TreeView>');
		 for (var i = 0; i < tree.children.length; i++)
			 writeXML (tree.children[i], 1);
		 $.writeln ("</TreeView>");
		 }

	 function writeXML (node, level) {
		 $.writeln (indent (level), "<"+node.text+">");
		 var kids = node.items;
		 for (var i = 0; i < kids.length; i++) {
			 if (kids[i].type == "node")
				 writeXML (kids[i], level+1);
			 else
				 $.writeln (indent (level+1), "<item>" + kids[i].text + "</item>");
		 } // for
		 $.writeln (indent (level), "</"+node.text+">");
	 }

	 function indent (n) {
		 var s = " "; for (var i = 0; i < n; i++) {s += "\t";}
		 return s;
		 }
	
	 w.show ();

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TreeView>
	 <Mammals>
		 <cats>
			 <item>tabbies</item>
			 <item>tiggers</item>
		 </cats>
		 <dogs>
			 <item>terrier</item>
			 <colly>
				 <item>border</item>
				 <item>highland</item>
			 </colly>
			 <item>labrador</item>
		 </dogs>
	 </Mammals>
	 <Insects>
		 <item>ants</item>
		 <item>bees</item>
		 <item>flies</item>
	 </Insects>
</TreeView>

63

Two examples of treeview controls are Gabe Harbs's script that shows based-on
relationships between paragraph styles and the class picker in a GREP editor
script.

tabbedpanel

Tabbed panels are are ScriptUI's third main container type. They are defined
like groups and panels using the identifier tabbedpanel. You're familiar with
them because InDesign uses several dialogs of this type. By way of example, the
following script partially reproduces one of InDesign's tabbed-panel dialogs,
namely, XML export. There's nothing you can do about the appearance of the
borders of the tabs.

var w = new Window ("dialog", "Export XML", undefined, {closeButton: false});
	 w.alignChildren = "right";
	 var tpanel = w.add ("tabbedpanel");
		 tpanel.alignChildren = ["fill", "fill"];
		 tpanel.preferredSize = [350,300];
		 var general = tpanel.add ("tab", undefined, "General");
			 general.alignChildren = "fill";
			 var g_options = general.add ("panel", undefined, "Options");
				 g_options.alignChildren = "left";
				 g_options.dtd_decl = g_options.add ("checkbox", undefined, "Include DTD Declaration");
				 g_options.view_XML = g_options.add ("checkbox", undefined, "View XML Using: ");
				 g_options.export_sel = g_options.add ("checkbox", undefined, "Export From Selected Element");
				 g_options.export_untagged = g_options.add ("checkbox", undefined, "Export Untagged Tables as CALS XML");
				 g_options.remap = g_options.add ("checkbox", undefined, "Remap Break, Whitespace, and Special Characters");
				 g_options.xslt = g_options.add ("checkbox", undefined, "Apply XSLT: ");
				 g_options.add ("statictext", undefined, "Encoding: ");
		 var images = tpanel.add ("tab", undefined, "Images");
			 images.alignChildren = "fill";
			 var img_options = images.add ("panel", undefined, "Image Options");
	 var buttons = w.add ("group");
		 buttons.add ("button", undefined, "Export", {name: "ok"});
		 buttons.add ("button", undefined, "Cancel");
w.show ();

Tabs can be preselected just like items in a list. For example, the above script
starts with the General tab selected; to open the Images tab on start-up, use this
line:

tpanel.selection = 1;

http://in-tools.com/indesign/scripts/freeware/ShowBasedOn.zip
http://www.kahrel.plus.com/indesign/grep_editor.html

64

Vertical tabs

ScriptUI doesn't natively support the kind of vertically tabbed windows that you
see in InDesign. Examples of such windows are InDesign's Preferences window
and the paragraph and character style windows. But using a combination of of
the properties stack and visible, that type of window is not difficult to emulate.
The following script mimics (part of) InDesign's Preferences window.

The idea is to create a group or a panel for each tab and stack align them so that
they're all in the same location in the window. An onChange event handler on
the list makes all 'tabs' (groups/panels) invisible, then makes the selected tab
visible.

var w = new Window ('dialog {text: "Preferences", orientation: "column", alignChildren:
								 ["fill","fill"], properties: {closeButton: false}}');
	 w.main = w.add ('group {preferredSize: [600, 500], alignChildren: ["left","fill"]}');
	 w.stubs = w.main.add ('listbox', undefined, ['General', 'Interface', 'UI Scaling']);
		 w.stubs.preferredSize.width = 150;
	 w.tabGroup = w.main.add ('group {alignment: ["fill","fill"], orientation: "stack"}');

	 w.tabs = [];
		 w.tabs[0] = w.tabGroup.add ('group');
			 w.tabs[0].add ('statictext {text: "General"}');
			 w.tabs[0].add ('panel');
			 w.tabs[0].add ('checkbox {text: "Show Start workspace when no documents are open"}');
			 w.tabs[0].add ('checkbox {text: "Show Recent Files workspace when opening a file"}');
			 w.tabs[0].add ('panel {text: "Page numbering", preferredSize: [-1, 80]}');
			 w.tabs[0].add ('panel {text: "Font downloading and embedding", preferredSize: [-1, 80]}');
			 w.tabs[0].add ('panel {text: "Object editing", preferredSize: [-1, 150]}');
			 w.tabs[0].add ('panel {text: "When placing or pasting content", preferredSize: [-1, 80]}');
			 with (w.tabs[0]) {
				 with (add ('group {alignment: "center"}')) {
					 add ('button {text: "Reset al warning dialogs"}');
				 }
			 }

		 w.tabs[1] = w.tabGroup.add ('group');
			 w.tabs[1].add ('statictext {text: "Interface"}');
			 w.tabs[1].add ('panel {preferredSize: [-1, -10]}');
			 w.tabs[1].add ('panel {text: "Appearance", preferredSize: [-1, 80]}');
			 w.tabs[1].add ('panel {text: "Cursor and gesture options", preferredSize: [-1, 150]}');
			 w.tabs[1].add ('panel {text: "Panels", preferredSize: [-1, 150]}');
			 w.tabs[1].add ('panel {text: "Options", preferredSize: [-1, 100]}');

65

		 w.tabs[2] = w.tabGroup.add ('group');
			 w.tabs[2].add ('statictext {text: "UI Scaling"}');
			 w.tabs[2].add ('panel');
			 w.tabs[2].add ('panel {text: "Options", preferredSize: [-1, 200]}');
		
	 w.buttons = w.add ('group {alignment: "right"}');
		 w.buttons.add ('button {text: "OK"}');
		 w.buttons.add ('button {text: "Cancel"}');

	 for (var i = 0; i < w.tabs.length; i++) {
		 w.tabs[i].orientation = 'column';
		 w.tabs[i].alignChildren = 'fill';
		 w.tabs[i].alignment = ['fill','fill'];
		 w.tabs[i].visible = false;
	 }
	
	 w.stubs.onChange = showTab;
	
	 function showTab () {
		 if (w.stubs.selection !== null) {
			 for (var i = w.tabs.length-1; i >= 0; i--) {
				 w.tabs[i].visible = false;
			 }
			 w.tabs[w.stubs.selection.index].visible = true;
		 }
	 }

	 w.onShow = function () {
		 w.stubs.selection = 1;
		 showTab;
	 }
	
w.show();

66

progressbar

The progressbar control, unsurprisingly, is used to display a progress bar so that
the script's user gets an idea of how long a script will run. progressbar takes
four parameters:

w.add ("progressbar", undefined, start, stop);

in which start and stop are the start and stop values of the bar itself,
corresponding to the first and last items of whatever you're processing. The start
value will usually be 0, while stop could be, for instance, the index of last array
element if you're dealing with an array. Here is an example:

var found = new Array (50);

var w = new Window ('palette');
	 w.pbar = w.add ('progressbar', undefined, 0, found.length);
	 w.pbar.preferredSize.width = 300;
w.show();

for (var i = 0; i < found.length; i++){
	 w.pbar.value = i+1;
	 $.sleep(20); // Do something useful here
}

Note that because we start counting at 1, we write the value of of the bar as
i+1 to make sure that the bar displays before the first item is processed, and
that the bar fills up completely. If you don’t, you'll see that the bar doesn’t fill its
container so that it might look as if the last item in the array isn’t processed.

In InDesign scripts, many arrays are processed from back to front. If you use
a progress bar in such a script and use the above code, then the bar will be
updated the wrong way round, which looks silly. To get the bar to display from
left to right as it should, update it using the following code:

for (var i = found.length-1; i > -1; i--){
	 w.pbar.value = found.length-i;
	 $.sleep(20);
}

On a Mac you can create vertical progress bars simply by making their width
smaller than their height. Unfortunately, on PCs running Windows this isn’t
possible (you can create a vertical bar, but the progress indication will always be
left-to-right).

Note: in scripts that use progress bars, you cannot set
app.scriptPreferences.enableRedraw to false. If you do, the
progress bar doesn't display correctly. Across InDesign versions
and operating systems, the situation is a bit complicated.
See Ariel Walden’s excellent overview here.

https://forums.adobe.com/thread/2089372

67

var w = new Window ("dialog");
	 w.orientation = "row";
	 pb1 = w.add ("progressbar", undefined, 0, 100);
	 pb2 = w.add ("progressbar", undefined, 0, 100);
	 pb3 = w.add ("progressbar", undefined, 0, 100);
	 pb1.preferredSize = pb2.preferredSize = pb3.preferredSize = [20, 300];
	 pb1.value = 20;
	 pb2.value = 60;
	 pb3.value = 40;
w.show();

There are more sophisticated ways of applying progress bars, of which Marc
Autret's script is an excellent example.

Lists as progress indicators

ScriptUI has a control progressbar, but using a list you can create a more
informative kind of progress indication. For example, if you're processing several
files, you can display the names of these files in a list, and use a highlight to
show which file is being processed. Here is the script:

var list = ["one", "two", "three", "four", "five", "six"];
var hlights = highlight_list (list);

for (var i = 0; i < list.length; i++)
	 {
	 hlights.children[0].selection = i;
	 hlights.show ();
	 // user functions
	 $.sleep (400);
	 }
hlights.close();

function highlight_list (array)
	 {
	 var w = new Window ("palette", undefined, undefined, {borderless: true});
	 w.margins = [5,5,5,5];
	 w.add ("listbox", undefined, array);
	 return w;
	 }

The function highlight_list initialises the window but doesn't show it yet. In
the for-loop, we address list items by using hlights.children[n], where n is the
loop counter. In each iteration the window is shown using show() to show the

Note: On Mac OS the Mondo rendering engine was
introduced in Photoshop CC 2015. As a result, JPG
images are no longer accepted, all images must be PNG.
According to Davide Barranca this will be fixed (see
cc2015-survival-guide, point 8).

http://forums.adobe.com/message/3152162#3152162
http://www.davidebarranca.com/2015/06/html-panel-tips-17-cc2015-survival-guide/

68

change. (I don't know why it's necessary to do it like this, but it was the only way
to make it work; using layout() doesn't seem to work here.)

A small change in the definition of the listbox makes for a slightly different
apprearance of the window:

w.add ("listbox", undefined, array, {multiselect: true});

By adding {multiselect: true} to the listbox definition, processed items remain
highlighted.

Counters as progress indicators

The simplest progress indicator is a window that shows you the value of the
counter of a for-loop, for example. When I suspect that an operation may take
a bit longer than I care to wait for, I use this method because it's so easy to write.
Here's an example:

#targetengine "session";
var counter = new Window("palette");
counter.prompt = counter.add("statictext",[0,0,80,20]);
counter.show();
var cells = app.activeDocument.allCellStyles;
for(var i = cells.length-1; i > 0; i--){
	 counter.prompt.text = String(i);
	 cells[i].verticalJustification = VerticalJustification.bottomAlign;
	 }
counter.close();

Lines 2 to 4 define and show the counter window, which is a palette with just
one statictext control, which is updated at every iteration of the for-loop. By
counting down, the display starts at the highest value, working its way down
to 1.

image

Image controls take a file object as their contents parameter. Here is an
example:

var w = new Window ("dialog", "Bouquet");
	 var flowers = w.add ("image", undefined, File ("/d/scriptui/bouquet.jpg"));
w.show ();

It's not possible to position images absolutely (using .location = [x,y]), but they
can be positioned with the alignment properties left, right, etc. Nor is it possible

69

to scale images just like that: they're always shown at their native size. Setting
a smaller size merely crops the image:

var w = new Window ("dialog", "Bouquet");
	 var flowers = w.add ("image", undefined, File ("/d/scriptui/bouquet.jpg"));
	 flowers.size = [50,50];
w.show ();

Resizing images

I said "not just like that" because as Marc Autret points out, with a prototype
extension of the Image object it is possible to resize images. Marc’s brilliant
extension is added at the beginning of the previous script:

Image.prototype.onDraw = function()
	 { // written by Marc Autret
	 // "this" is the container; "this.image" is the graphic
	 if(!this.image) return;
	 var WH = this.size,
		 wh = this.image.size,
		 k = Math.min(WH[0]/wh[0], WH[1]/wh[1]),
		 xy;
	 // Resize proportionally:
	 wh = [k*wh[0],k*wh[1]];
	 // Center:
	 xy = [(WH[0]-wh[0])/2, (WH[1]-wh[1])/2];
	 this.graphics.drawImage(this.image,xy[0],xy[1],wh[0],wh[1]);
	 WH = wh = xy = null;
	 }

var w = new Window ("dialog", "Bouquet");
	 var flowers = w.add ("image", undefined, File ("/d/scriptui/bouquet.jpg"));
	 flowers.size = [50,50];
w.show ();

slider

A slider is just that: the familiar slide bar with a control which you move with the
mouse. Most sliders use some text field to display the slider's value as it being
moved around; you use the onChanging callback for that, as illustrated in the
following script.

Note: If an image does not redraw properly in
Photoshop CS5 or later, try using app.refresh();
This is part of Photoshop's object model, not
ScriptUI's.

70

var w = new Window ("dialog");
	 var e = w.add ("edittext", undefined, 50);
	 var slider = w.add ("slider", undefined, 50, 0, 100);
	 slider.onChanging = function () {e.text = slider.value;}
w.show ();

The slide bar takes three numeric parameters: in the example, 0 and 100 are
the minimum and maximum values, 50 is the value used when the window is
drawn.

Some sliders use negative values. In Photoshop you'll find many examples, such
as the Brightness/Control and the Exposure dialogs. By default, ScriptUI's sliders
use positive values only, but you can easily get around that, as shown in the
following script (we use a slightly different format here, the so-called resource
format, for clarity):

var w = new Window ('dialog');
	 var value = w.add ('edittext {text: 0, characters: 3, justify: "center", active: true}');
	 var slider = w.add ('slider {minvalue: -50, maxvalue: 50, value: 50}');
	 slider.onChanging = function () {value.text = slider.value - 50}
	 value.onChanging = function () {slider.value = Number (value.text) + 50}
w.show();

You would think that {minvalue: -50, maxvalue: 50, value: 0} would place the
slider's handle in the slider's centre, but it doesn't, so you have to use 50 as the
start value. In the example we use an edittext control to display the slider's
value, and that field can be used to set the slider's value, too, because we added
a callback (value.onChanging) to the edittext control.

On Macs, but not on Windows, you can create a vertical slider simply by setting
its width to a smaller value than its height:

var w = new Window ("dialog");
	 var slider = w.add ("slider", undefined, 0, 100);
	 slider.size = "width: 30, height: 300";
w.show ();

scrollbar

Scrollbars are added automatically to controls of type edittext and listbox
when the text or the list items don't fit their containers; see the examples on
pages 11 and 29, respectively.

If you want to add scrollbars to any other control, you're very much on your
own in that you have to code all events yourself. This is not so straightforward,

71

witness the daunting code produced by Marc Autret and Bob Stucky in Adobe's
scripting forum in this thread. Gerald Singelmann posted a more accessible
example in his blog. Below, after some scrollbar basics, I outline a general
approach to scrolling panels.

A scrollbar can be placed horizontally or vertically. Its orientation is determined
by its coordinates: if the height is bigger than the width, as in the script below,
the bar is shown vertically; for horizontal scrollbars, use a width bigger than the
height.

var w = new Window("dialog");
	 var g = w.add ("group");
		 var panel = g.add("panel", [0,0,300,200], "Panel");
		 var sbar = g.add ("scrollbar", [0,0,20,200]);
w.show();

The bar's width is set to 20 and its height to 200: this creates a vertical scrollbar
with the same height as the panel.

The scrollbar’s value

You manipulate the scrollbar in the familiar way: use the arrow buttons at the
top and bottom of the bar; move the slider up or down; or click on the bar
between the slider and one of the arrow buttons.

Any of these manipulations returns a value which corresponds with the position
of the slider on the bar. You capture these values with a callback, as shown in
the following script, which outputs values to the ESTK’s console:

var w = new Window("dialog");
	 var g = w.add ("group");
		 var panel = g.add("panel", [0,0,300,200]);
		 var sbar = g.add ("scrollbar", [0,0,20,200]);
		 sbar.onChanging = function () {$.writeln (sbar.value)}
w.show();

Notice that when you use the up and down buttons, integer values are returned.
But if you use the slider, the bar’s value is usually a fraction.

Scrollbars have a minimum and a maximum value. The defaults are 0 and
100. A scrollbar’s default value when the window is drawn is 0, which can be
changed by setting that value, as follows:

sbar.value = 50;

http://forums.adobe.com/thread/573855?decorator=print&displayFullThread=true
http://indesign-faq.de/de/ScriptUI_scrollbar

72

If you want to set the minumum and maximum values as well, you can set these
and the default value in one line of code:

	 var sbar = panel.add ("scrollbar", [0,0,20,200], 0, 0, 60);

where 0, 0, 60 are the default, minimum, and maximum values, respectively.

stepdelta

When you click an arrow button, the scrollbar's value changes by 1 by default.
So in a scrollbar which uses the default minimum and maximum of 0 and 100,
you need to press the down button 100 times to get the slider to the bottom of
the bar. To change that, set the bar's stepdelta value:

sbar.stepdelta = 10;

Now you need just ten clicks to move the slider from top to bottom. And with
a stepdelta of 100, one press moves the slider from the top to the bottom of the
scrollbar.

jumpdelta

The jumpdelta value determines in how many steps the slider moves up or
down when you click between the slider and the up or down button. The
jumpdata therefore also determines the size of the slider. The default value is
20, which means that in a scrollbar with the default min and max values of 0
and 100, you click five times to move the slider from one end to the other. With
a jumpdata of 50, you need just two clicks.

Scrolling panels and groups

To scroll a panel (or a group), what you do is move that panel behind the
window. You create a panel that is larger than its container, and scrolling a panel
is therefore like moving the whole thing so that you get a different view on it –
hence the name viewport approach.

The following script creates a group (scrollGroup) with 36 lines, and sets a limit
on the window's height so that much of the group’s content is not visible. When
you scroll down using the scroll bar, you move the group up, providing a new
window on the group. Thus, in this case, the changing scrollbar value is used
to change the vertical position of the group. (This script was inspired by one of
Vlad Vladila's scripts and replaced my own earlier clumsy effort.)

jumpdelta = 20 jumpdelta = 50

73

var w = new Window('dialog');
	 w.maximumSize.height = 300;

	 var panel = w.add ('panel {alignChildren: "left"}');
		 var scrollGroup = panel.add ('group {orientation: "column"}');
		 for (var i = 0; i <= 35; i++) {
			 scrollGroup.add ('statictext', undefined, 'Label ' + i);
		 }

	 var scrollBar = panel.add ('scrollbar {stepdelta: 20}');

	 // Move the whole scroll group up or down
	 scrollBar.onChanging = function () {
		 scrollGroup.location.y = -1 * this.value;
	 }

	 w.onShow = function() {
		 // Set various sizes and locations when the window is drawn
		 panel.size.height = w.size.height-20;
		 scrollBar.size.height = w.size.height-40;
		 scrollBar.size.width = 20;
		 scrollBar.location = [panel.size.width-30, 8];
		 scrollBar.maxvalue = scrollGroup.size.height - panel.size.height + 15;
	 };

w.show();

flashplayer

Flashplayer controls are similar to image controls. And like images, if you set
their size, you just get a crop or an oversized frame:

var w = new Window ("dialog", "Butterfly");
	 var flash = w.add ("flashplayer", undefined, File ("/d/scriptui/wave.swf"));
w.show ();

The controls for stopping and starting movies in CS3 were discontinued in CS4.
You need ActionScript and Flash/Flex to regain any control over movie clips. See
Loïc Aigon's post at here for an interesting discussion on the interaction of Flash,
Flex, and ScriptUI.

The Object-Model Viewer in the ESTK is in fact a flashplayer control in a ScriptUI
window. See the script 35omvUI.jsx, which (in CS5/CS6 on Windows) lives in
Adobe/Adobe Utilities - CS5(CS6)/ExtendScript Toolkit CS5(CS6)/Required, from

http://www.loicaigon.com/blog/?p=958

74

CC, in /Adobe/Adobe ExtendScript Toolkit CC. This script is educational not only
because of the flashplayer control used in it.

(The flashplayer control was discontinued in CC2017.)

Measurement control

Earlier we mentioned that ScriptUI has just one input method, edittext, which,
as the name suggests, accepts text, which in effect means that it accepts any
input. InDesign's classic dialog system, on the other hand, has controls for text,
measurement units, reals, integers, and percentages. However, it's possible to
script those controls. Here we give an example of a measurement control.

The control behaves just like InDesign's measurement controls: type a value
followed by some measurement unit and the script shows that value in the
document's units. For example, if your document's units are points and you
enter 10mm, this will be displayed as 28.346 pt. Enter a value without a unit
and that value will be displayed simply adding the document's unit. One
restriction of this script is that it doesn't let you do any arithmetic: in InDesign's
measurement controls you can add something like 12p*3 (3 times 12 picas), but
the script doesn't support that.

var w = new Window ('dialog');
	 var grp = w.add ('group');
		 grp.add ('statictext {text: "Width: "}');
		 var width = grp.add ('edittext {characters: 12, active: true}');
		 width.text = convert_units ("10mm", documentUnits());
w.show();

75

function convert_units (n, to) {
	 var unitConversions = {
		 'pt': 1.0000000000,
		 'p': 12.0000000000,
		 'mm': 2.8346456692,
		 'in': 72.00000000,
		 'ag': 5.1428571428,
		 'cm': 28.3464566929,
		 'c': 12.7878751998,
		 'tr': 3.0112500000
	 }
	 var obj = fix_measurement (n);
	 var temp = (obj.amount * unitConversions[obj.unit]) / unitConversions[to];
	 return output_format (temp, to)
}

function output_format (amount, target) {
	 // Add the target unit to the amount, either suffixed pt, ag, mm, cm, in, or infixed p or c
	 // The decimals, no trailing zeros
	 amount = amount.toFixed(3).replace(/\.?0+$/, ' ');
	 if (target.length == 2) { // two-character unit: pt, mm, etc.
		 return String (amount) + ' ' + target;
	 } else {// 'p' or 'c'
		 // calculate the decimal
		 var decimal = (Number (amount) - parseInt (amount)) * 12;
		 // return the integer part of the result + infix + formatted decimal
		 return parseInt (amount) + target + decimal;
		 }
}

76

function fix_measurement (n) {
	 n = n.replace(/ /g, ' '); // Delete all spaces
	 n = n.replace (/^([pc])/, '0$1'); // Change p3 to 0p3
	 // Infixed 'p' and 'c' to decimal suffixes: 3p6 > 3.5 p
	 n = n.replace (/(\d+)([pc])([.\d]+)$/, function () {
		 return Number (arguments[1]) + Number (arguments[3]/12) + arguments[2]}
);
	 // Split on unit
	 var temp = n.split (/(ag|cm|mm|c|pt|p|in)$/);
	 return {
		 amount: Number (temp[0]),
		 unit: temp.length === 1 ? doc_units() : temp[1]
	 };
}

function documentUnits () {
	 switch (app.documents[0].viewPreferences.horizontalMeasurementUnits){
		 case 2051106676: return 'ag';
		 case 2053336435: return 'cm';
		 case 2053335395: return 'c';
		 case 2053729891: return 'in';
		 case 2053729892: return 'in';
		 case 2053991795: return 'mm';
		 case 2054187363: return 'p';
		 case 2054188905: return 'pt';
		 }
}

Simulating keypresses

Suppose you have a script that contains a list and a button to select all items
in that list. The code will include an onClick function that selects the whole list
when that button is pressed. Now suppose that when the scripts starts, all items
in the list should be selected. You don’t want to repeat the code to select that
list on startup: you can tell that button to consider itself pressed by including
adding the .notify() method to the button:

77

var w = new Window ('dialog');
	 var list = w.add ('listbox', undefined, ['one', 'two', 'three'], {multiselect: true});
	 var select_all = w.add ('button', undefined, 'Select all');
	
	 select_all.onClick = function (){
		 var selected = [];
		 for (var i = 0; i < list.items.length; i++){
			 selected[i] = list.items[i];
		 }
		 list.selection = selected;
	 }

	 select_all.notify();
	
w.show();

The notify() method can be used for various other controls as well.

Adding shortcut keys to controls

To select certain controls quickly or to move the cursor to a certain edit field,
you can define shortcut keys for those controls. Unfortunately, this is Windows-
only. Here is an example with several shortcut keys:

var w = new Window ("dialog");
	 var grp = w.add("group");
		 var st = grp.add("statictext", undefined, "&Name:");
		 var txt = grp.add("edittext"); txt.shortcutKey = "n";
	 var c1 = w.add ("checkbox", undefined, "&Check 1"); c1.shortcutKey = "c";
	 var c2 = w.add ("checkbox", undefined, "C&heck 1"); c2.shortcutKey = "h";
	 var r1 = w.add ("radiobutton", undefined, "&Radio 1"); r1.shortcutKey = "r";
	 var r2 = w.add ("radiobutton", undefined, "R&adio 1"); r2.shortcutKey = "a";
w.show();

Naturally, to make it clear to the user that certain shortcut keys can be used,
those letters should be cued. In ScriptUI you do that by placing an & before the
letter that you want marked, which adds an underscore; see the screenshot.
Note: The underscores of most controls become visible only after pressing the
Alt key.

In almost all cases, shortcut keys have the same effect as mouse clicks. For
instance, pressing Alt+n in the above script activates the edit field at Name,
Alt+c toggles the first checkbox, etc.

78

Control titles

So far we’ve added control titles by placing them in a separate staticText control,
as follows:

var w = new Window ('dialog');
	 var grp = w.add ('group');
		 grp.add ('statictext', undefined, 'City: ');
		 var drop = grp.add ('dropdownlist', undefined, ['Lisbon', 'Lancaster']);
			 drop.selection = 0;
w.show();

At some stage ScriptUI acquired a method to add titles. The above script can be
changed to use that property as follows:

var w = new Window ('dialog');
	 var drop = w.add ('dropdownlist', undefined, ['Lisbon', 'Lancaster']);
		 drop.selection = 0;
		 drop.title = 'City:';
w.show();

In addition, titles can be formatted using the titleLayout property. For example,
to place the title after the control, use this code:

var w = new Window ('dialog');
	 var drop = w.add ('dropdownlist', undefined, ['Lisbon', 'Lancaster']);
		 drop.selection = 0;
		 drop.title = 'City';
		 drop.titleLayout = {alignment: ['right', 'center']};
w.show();

But the trouble is that the title property is available only for controls of type
dropdownlist, flashplayer, iconbutton, image, and tabbedpanel, not, crucially
for edittext and list controls. Since I most often need titles for edittext controls,
and since I always place titles on the left-hand side of controls, I use a different
method: I continue to define titles as statictext controls, and place the statictext
as a property of a group:

var w = new Window ('dialog');
	 var grp = w.add ('group {_: StaticText {text: "City:"}}');
		 var drop = grp.add ('dropdownlist', undefined, ['Lisbon', 'Lancaster']);
		 drop.selection = 0;
w.show();

79

This method uses a so-called resource string, which makes for compact code
(see p. 115 for more details on resource strings). For consistency I use this
method not only for edittext controls, but for all controls.

Adding and removing controls dynamically

It is possible to add and remove controls after a window has been drawn and
have the window resized to accommodate the added and removed items. This
is handled by the layout manager, which is invoked by the .layout function. The
following script, written by Gerald Singelmann, illustrates this. See also some
links in the resources in "Resize windows" on page 122.

80

// Slightly adapted from G. Singelmann's script, see here.
var win = new Window ("dialog");

	 var maingroup = win.add ("panel {orientation: 'column'}");
	 add_row	 (maingroup);

	 var show_btn = win.add ("button", undefined, "show");
	 show_btn.onClick = function () {
	 var txt = " ";
	 for	 (var n = 0; n < maingroup.children.length; n++) {
		 txt += maingroup.children[n].edit.text + "\n";
	 }
	 alert ("Rows: \n" + txt);
	 }

win.show ();

function add_row (maingroup) {
	 var group = maingroup.add	 ("group");
	 group.edit = group.add ("edittext", [" ", " ", 200, 20], maingroup.children.length);
	 group.plus = group.add ("button", undefined, "+");
	 group.plus.onClick = add_btn;
	
	 group.minus = group.add ("button", undefined, "-");
	 group.minus.onClick = minus_btn;
	 group.index = maingroup.children.length - 1;
	 win.layout.layout (true);
}

function add_btn () {
	 add_row (maingroup);
}

function minus_btn () {
	 maingroup.remove (this.parent);
	 win.layout.layout (true);
}

Other aspects of windows, too, can be changed dynamically. On p. 114 is an
example of changing a container's orientation dynamically.

http://www.hilfdirselbst.ch/gforum/gforum.cgi?post=540693#540693

81

Labelling controls

Controls can be labelled so that you can later identify them. This works much
like using script labels on objects outside of ScriptUI. When you add a label to
a control, you in fact simply add a text property to it.

We saw an example earlier which defined two event listeners on two panels
with radio buttons so that it seemed as if those radio buttons were in one group.	
This still required two listeners. I mentioned there that these panels could be
grouped together, in which case one event listener would suffice. This would be
a more complex listener in that it should be able to tell which panel was clicked
on. This is where labels come in; the following script illustrates:

var w = new Window ("dialog");
	 var radiogroup = w.add ("group");
		 var panel1 = radiogroup.add ("panel"); panel1.label = "p1";
			 for (var i = 0; i < 5; i++) {panel1.add ("radiobutton", undefined, "Rb "+i);}
		 var panel2 = radiogroup.add ("panel"); panel2.label = "p2";
			 for (var i = 0; i < 5; i++) {panel2.add ("radiobutton", undefined, "Rb "+i);}
		 panel1.children[0].value = true;

	 radiogroup.addEventListener ("click", function (event)
		 {
		 if (event.target.parent.label == "p1")
			 {
			 for (var i = 0; i < panel2.children.length; i++)
				 panel2.children[i].value = false;
			 }
		 else
			 {
			 for (var i = 0; i < panel1.children.length; i++)
				 panel1.children[i].value = false;
			 }
		 } // if
);

w.show();

The two panels are labelled using a property label, but you can use any name
you like, such as panel1.id = "left". The event listener then checks the value of
the label and acts according to it: if panel1 was clicked, panel2’s buttons are
disabled, if panel2 was clicked, panel1’s children are unmarked.

82

Labels can be used on all types of control. For a special type of label – name –
see the section Communication between windows, below.

Finding windows

While a dialog is displayed, you can't do anything else: InDesign sits there
waiting patiently for you to press OK (or Cancel) so it can continue and go about
its business. But as we’ve seen, palettes are different: you can create a palette
and then go and do something different: edit a document, generate an index –
anything at all. Even run another script.

Palettes are useful, for instance, to display things that aren’t so easy to access in
InDesign. The state of the No break attribute, for example, can be checked only
by opening the Characters panel, then opening the panel’s flyout (it doesn't
even show in the Control panel). This is tedious and we would like a panel that
displays the state of No break of the selected text and updates automatically
when the state of No break changes.

Such a script works as follows in general: (1) create a panel; (2) create an event
listener; and (3) create a function which, every time something changes in
a document checks if that change involves No break and if it does, looks for the
palette and updates it.

On page 15 we gave a script that can be used display the state of the No
break character attribute (it's repeated here in the sidebar). That version doesn’t
update automatically, you have to click a button to update the displayed state.
The version that updates automatically using an event listener is listed below on
the next page.

The script first checks if a window exists with the name Attributes using the
find() method:

var windowName = 'Attributes';
var w = Window.find ('palette', windowName);

This method takes two obligatory parameters: the type of window we’re
looking for (here, a palette) and the window’s name – you must therefore name
a window if you want to find it later.

If the window is not found, a new one is created and an event listener is
installed that calls the updateStatus() function whenever the selection changes.
(To achieve that, note that we took that function out of the window's definition.)
If the window is found, it's simply displayed and its status updated.

// The original script
#targetengine miscellaneous;
var w = new Window ('palette')
	 w.nobreak = w.add ('statictext {text: "No break: ", characters: 10, justify: "center"}');
	 w.button = w.add ('button {text: "Update"}');
	
	 function updateStatus() {
		 var state = ' ';
		 if (app.selection.length > 0) {
			 var str = app.selection[0].insertionPoints.everyItem().noBreak.join();
			 if (str.indexOf ('false') > -1 && str.indexOf ('true') > -1) {
				 state = '0/1';
			 } else if (str.indexOf ('false') > -1) {
				 state = '0';
			 } else {
				 state = '1';
			 }
		 }
		 w.nobreak.text = 'No break: ' + state;
	 }

	 w.onShow = w.button.onClick = updateStatus;
	
	 w.show();

83

With this script installed, whenever you select some text, the state of No break is
shown in the window: 0 if No break is not applied, 1 when it is applied, and 0/1
to indicate a mixed state.

Note: to debug and edit a script that looks for an existing window, you need
to change the name on every new run because if you don't, the script uses the
window set in the previous run and your changes won’t execute.

A more elaborate version of the script, with which the no break state can be
changed, is shown on p. 102.

84

#targetengine miscellaneous;
var windowName = 'Attributes';
var attr = Window.find ('palette', windowName);
if (attr === null){
	 attr = createWindow (windowName);
	 app.addEventListener ('afterSelectionChanged', updateStatus);
}
attr.show();

function updateStatus() {
	 var w = Window.find ('palette', windowName);
	 if (w !== null) {
		 try {
			 var str;
			 var state = ' ';
			 if (app.selection.length > 0) {
				 var str = app.selection[0].textStyleRanges.everyItem().noBreak.join();
				 if (str.indexOf ('false') > -1 && str.indexOf ('true') > -1) {
					 state = '0/1';
				 } else if (str.indexOf ('false') > -1) {
					 state = '0';
				 } else {
					 state = '1';
				 }
			 }
			 w.nobreak.text = 'No break: ' + state;
		 } catch (_){}
	 }
}

function createWindow (title) {
	 var w = new Window ('palette');
		 w.text = title;
		 w.nobreak = w.add ('statictext {text: "No break: ", characters: 10}');
		 w.onShow = updateStatus;
	 return w;
}

Finding controls

Apart from windows, you can find controls inside windows as well. Like finding
windows, you have to name a control if you want to find it later. For example,
suppose you have a palette that defines an edittext control, as in:

85

#targetengine "session";
var console = createConsole();
function createConsole () {
	 var w = new Window ("palette", "Console");
		 w.add ("edittext", [0,0,400,400], " ", {multiline: true, name: "consoleText"});
	 return w;
}

There's no need to display the window yet, we do that when we actually access
it. A function in the same script or one in a different script gets access to the
name control as follows:

function writeConsole (txt)
	 {
	 var w = Window.find ("palette", "Console");
	 if (w !== null)
		 {
		 if (!w.visible) w.show();
		 w.findElement ("consoleText").text = txt;
		 }
	 }

This function locates the palette using Window.find(), using two obligatory
parameters: the window type (here, a palette) and the window's title. Then, if
the palette was found, it checks to make sure that the console is visible, and if it
isn't, it displays it. Finally, the function uses findElement() to locate the edittext
control and adds the message to whatever is in the text field.

Closing windows

Remember that in a script that uses a palette, you need to include the
#targetengine directive. In other words, a palette is always created in
a persistent engine. Now, when a script that runs in a persistent engine finishes,
any variables created by the script remain in memory (though accessible only
from within that engine). The same goes for palettes: even if you close a palette
using close(), it remains in memory.

You should therefore always check if a particular palette exists before you create
it, along the following lines:

86

function createMessageWindow ()
	 {
	 var w = Window.find ("palette", "Message");
	 if (w == null)
		 {
		 w = new Window ("palette", "Message");
		 w.mess = w.add ("statictext", [0,0,300,20], " ");
		 }
	 w.show();
	 }

We use the Window.find() method to locate a particular palette, and if we can't
find it, we create it.

All this applies to dialogs, too, but only if you create them in a persistent engine.
A dialog that's closed in a script that does not run in a persistent engine is
deleted when you close it.

Fonts

The default type size used in ScriptUI windows is much too small for me, so
I usually make that bigger. The typeface doesn't bother me (it's usually Tahoma
or something similar), it's size that matters. The easiest way to set a control's
type size is as follows:

var w = new Window ("dialog");
	 button1 = w.add ("button", undefined, "Default");
	 button2 = w.add ("button", undefined, "Bigger");
	 button2.graphics.font = "dialog:18";
w.show ();

This sets the text of the second button's type size to 18, using the window's
default font. To change the typeface as well, use the following:

button2.graphics.font = "Tahoma:18";

And to change the font style too, for example, to bold, use this construction:

button2.graphics.font = "Tahoma-Bold:18";

Another, more elaborate, way of setting a window's font is the newFont()
method (because it's more elaborate I rarely use it). Here is an example:

button2.graphics.font = ScriptUI.newFont ("dialog", "Bold", 18);

This type of construction can be used to set the typeface as well:

Note: Fonts and colours
cannot be changed in
InDesign CC and later.

Font names are treated differently on Macs and PCs
See Marc Autret’s article at www.indiscripts.com/
post/2012/05/scriptui-fonts-facts

87

button2.graphics.font = ScriptUI.newFont ("Verdana", "Bold", 18);

Both constructions can be used to change the typeface:

button2.graphics.font = "Verdana";
button2.graphics.font = ScriptUI.newFont ("Verdana");

But this resets the style and the type size to the default. Therefore, if you want
to change just the typeface, you need to store the font's size and style and use
those values when you change the face:

var ft = button2.graphics.font;
button2.graphics.font = "Verdana-" + ft.style + ":" + ft.size;

Note: For the font name you must use the font's PostScript name, which is not
necessarily the same as the menu name used in InDesign's or Photoshop's
interface. If setting a font throws an error, chances are that that font's PostScript
name is not the same as its menu name. For example, the PostScript name of
the Gill Sans family is GillSans. To find a font's PostScript name, run this one-line
script in the ESTK with the Console visible:

app.fonts.item ("Gill Sans").postscriptName;

Note: ScriptUI recognises just four style names: Regular, Italic, Bold, and Bold-
Italic.

Note: the font object has a (read-only) property substitute, but it's not clear
what it does. We can guess that it’s something like ‘if font x can’t be found, use
font y’, but it doesn’t work.

Unfortunately, you can set fonts for one control at a time only. If you want to
apply a font to all elements in a window or in a group or panel, you need to
process that control. I use this function:

function set_font (control, font)
	 {
	 for (var i = 0; i < control.children.length; i++)
		 {
		 if ("GroupPanel".indexOf (control.children[i].constructor.name) > -1)
			 set_font (control.children[i], font);
		 else
			 control.children[i].graphics.font = font;
		 }
	 }

88

You use it to apply a font to all elements in a window:

var w = new Window ("dialog");
	 var group1 = w.add ("group");
		 var button1 = group1.add ("button", undefined, "B1");
		 var button2 = group1.add ("button", undefined, "B2");
	 var group2 = w.add ("group");
		 var button1 = group2.add ("button", undefined, "B3");
		 var button2 = group2.add ("button", undefined, "B4");
	 set_font (w, "Tahoma:18");
w.show();

Or to just one group, as in this example:

set_font (group1, "Tahoma:18");

Note: On Windows you can't change the appearance of a window's title.

Unfortunately, everything to do with fonts stopped working in InDesign/
ScriptUI CC. This is a mild annoyance in many cases, but it makes some scripts
virtually useless. A script I use from time to time to enter polytonic Greek, for
example, works by combining keyboard presses to build up a character. In
CS6 and earlier that gave you a good idea, as shown on the right. In CC and
later, all you get as a preview is a puny little insect, as shown on the far right. (If
you're interested in the script, it's here: http://www.kahrel.plus.com/indesign/
compose-greek.html.) It is hoped that ScriptUI's font handling will be restored.

Colours

Colours, like fonts, are part of ScriptUI's graphics controls. But whereas fonts
are quite well manageable, with colours, brushes, and other graphics features
things start to get a bit complicated. We're not greatly helped by the almost
complete absence of any clear examples of how to use the various graphics
elements. InDesign/the ESTK comes with two scripts that have examples of how
to set the foreground and background colours, but that's about it.

The example below shows how to set font, style, size of controls, but also their
foreground and background colours. The example was distilled from two
sample scripts, ColorSelector.jsx and ColorPicker.jsx (to locate them, search your
hard disk; their location differs depending on operating system and InDesign
version). These scripts are instructive, and also useful to find colour values.
(Another good way of finding colour values is running Rapid ScriptUI; see the
resource section, below, for details.)

http://www.kahrel.plus.com/indesign/compose-greek.html
http://www.kahrel.plus.com/indesign/compose-greek.html

89

var w = new Window ("dialog");
	 var s = w.add ("statictext", undefined, "Static");
	 var e = w.add ("edittext", undefined, "Edit");
	 var b = w.add ("button", undefined, "Button");
	 // The window's backround
	 w.graphics.backgroundColor = w.graphics.newBrush (w.graphics.BrushType.SOLID_COLOR, [0.5, 0.0, 0.0]);
	 // Font and its colour for the first item, statictext
	 s.graphics.font = ScriptUI.newFont ("Helvetica", "Bold", 30);
	 s.graphics.foregroundColor = s.graphics.newPen (w.graphics.PenType.SOLID_COLOR, [0.7, 0.7, 0.7], 1);
	 // Font and colours for the second item, edittext
	 e.graphics.font = ScriptUI.newFont ("Letter Gothic Std", "Bold", 30);
	 e.graphics.foregroundColor = e.graphics.newPen (e.graphics.PenType.SOLID_COLOR, [1, 0, 0], 1);
	 e.graphics.backgroundColor = e.graphics.newBrush (e.graphics.BrushType.SOLID_COLOR, [0.5, 0.5, 0.5]);
	 // Font for the tird control, a button. Can't set colours in buttons
	 b.graphics.font = ScriptUI.newFont ("Minion Pro", "Italic", 30);
w.show ();

The method that sets the background colours – newBrush() – takes two
parameters: the type (SOLID_COLOR; the other type, THEME_COLOR, appears
not to work if you target InDesign) and the colour as an array of three numbers
between 0 and 1 (these are RGB colours). The method for setting the foreground
colours here – newPen() – takes an additional parameter to set the line width,
but as we're using it for applying a colour to a font, line width isn't relevant here
(though it must be specified).

It appears to be impossible to set the colour of buttons. This has been discussed
in Adobe's scripting forum, where Dirk Becker provided a work-around.

For a funny and educational application of fonts and colours, see milligram's
take on progress bars. For an interesting example of setting some colour
interactively, see Xavier's script.

Rules

Rules (a.k.a. lines) can be drawn in two ways. You can use ScriptUI's graphics
object, which seems to me to be very complicated, but it's possible to use
narrow panels to mimic horizontal and vertical rules. You can draw them at
a specific point, as in this example:

var w = new Window ("dialog");
	 w.add ("panel", [0,0,200,3]);
	 w.add ("panel", [0,20,200,23]);
	 w.add ("panel", [100,0,103,50]);
w.show();

http://forums.adobe.com/message/2335096#2335096
https://gist.github.com/966103
https://forums.adobe.com/thread/2159810

90

The first line, [0,0,200,3], sets a panel 200 pixels wide and 3 pixels high, so in
effect it draws a rule 3 pixels wide; the third line creates a 50-pixel tall and
3-pixel wide rule. Narrow tall panels create vertical rules, shallow wide panels,
horizontal ones.

Setting rules with absolute values has a disadvantage in that when you change
the window, you almost always have to change the rules as well, and that can
be finicky business. To avoid all that you can use ScriptUI's layout manager
(always the preferred method): using the alignment attribute fill, rules can be
made to resize with adjacent panels. Once set up, you have a flexible system.
Here is a schematic example.

var w = new Window ("dialog");
	 w.alignChildren = ["fill","fill"];
	 var g1 = w.add ("group");
		 g1.alignChildren = ["fill","fill"];
		 var p1 = g1.add ("panel");
			 p1.preferredSize = [100, 50];	 // Use [100,100] to get the second scr. shot
		 g1.separator = g1.add ("panel");	 // This shows as a vertical line
			 // This is the line's width
			 g1.separator.minimumSize.width = g1.separator.maximumSize.width = 3;
		 var p2 = g1.add ("panel");
			 p2.preferredSize = [100, 50];

	 w.separator = w.add ("panel");	 // This one shows as a horizontal line
		 // It says "height", but is again the line's width!
		 w.separator.minimumSize.height = w.separator.maximumSize.height = 3;

	 var g2 = w.add ("group");
		 g2.alignChildren = ["fill", "fill"];
		 var p3 = g2.add ("panel");
			 p3.preferredSize = [100, 50];	 // Use [200,50] to get the second scr. shot
		 g2.separator = g2.add ("panel");	 // This shows as vertical a line
		 g2.separator.minimumSize.width = g2.separator.maximumSize.width = 3;
		 var p4 = g2.add ("panel");
			 p4.preferredSize = [100, 50];
w.show ();

Because the window and the two groups are set to alignment fill, when you
change an element in a group the rules change accordingly. To see this, change
the first bold [100,50] in the above script to [100,100], and the second one to
[200,50], to get the result in the second screenshot.

91

(Note: the convoluted w.separator.minimumSize.height = w.separator.
maximumSize.height is necessary because objects in ScriptUI don't have
separate widths and heights that you can set. So we say that the rules must be
at least and at most 3 pixels wide, which is to say exactly 3 pixels.)

Callbacks

Callbacks are built-in methods that monitor events in a dialog: whether buttons
are clicked, or a list item is selected, if an edit field is exited, etc. In the CS5
version of the Tools Guide they're listed on pp. 83 and 147. The most frequently
used callback is probably onClick, which is illustrated in the following script:

var w = new Window ("dialog");
	 var b1 = w.add ("button", undefined, "Show this");
	 var b2 = w.add ("button", undefined, "Show that");
	
	 b1.onClick = function () {$.writeln (this.text + " clicked.")}
	 b2.onClick = function () {$.writeln (this.text + " clicked.")}
	
w.show ();

The script displays the dialog in the screenshot; press a button and it prints the
name of the button in the console.

The body of the callback's function – which for the b1 button in this example
is just {alert (this.text + " clicked.")} – can be a function of any complexity. The
principle of the other callbacks is essentially the same.

Another frequent callback is onChange, which applies to several types of
control. The first example shows how you can monitor an edit field.

var w = new Window ("dialog");
	 var e1 = w.add ("edittext");
	 var e2 = w.add ("edittext");
	 e1.active = true;
	 e1.characters = e2.characters = 20;
	 e1.onChange = function () {e2.text = e1.text}
w.show ();

The script displays a window with two empty edit fields. Type something in
the first field; when you press Enter/Return or Tab, whatever you typed in the
first field is (in this example) copied into the second one. Note that onChange
is not triggered until you leave the edittext control. To monitor activity while
something is entered, you need a different handler, onChanging:

92

var w = new Window ("dialog");
	 var e1 = w.add ("edittext");
	 var e2 = w.add ("edittext");
	 e1.active = true;
	 e1.characters = e2.characters = 20;
	 e1.onChanging = function () {e2.text = e1.text}
w.show ();

Now the second edit field is filled while you type.

Lists, too, can be monitored. The following script displays a three-item list,
preselecting the first item. Click a list item and it's name is printed in the console.

var w = new Window ("dialog");
	 var list = w.add ("listbox", undefined, ["one", "two", "three"]);
	 list.selection = 0;
	 list.onChange = function () {$.writeln (this.selection.text + " selected.")}
w.show ();

Clicking anywhere in the list counts as a change in the list. Double-clicking is
often useful as well:

var w = new Window ("dialog");
	 var list = w.add ("listbox", undefined, ["one", "two", "three"]);
	 list.selection = 0;
	 list.onDoubleClick = function () {$.writeln (this.selection.text + " double-clicked.")}
w.show ();

Adding callbacks in loops

Windows can be populated using loops. For example, you could add series
of buttons in a loop. Less intuitively, you can add callbacks in loops, too. The
following script exemplifies this. It uses a loop to add a bunch of buttons to
a window, and then it supplements those buttons with a gaggle of callbacks.

The idea of the script is to facilitate entering accents from the range Combining
diacritical marks, and in effect the script is an extension, in a way, of the
Glyph panel. The Glyph panel can show several Unicode ranges, but not the
combining diacriticals, and as I found myself hunting down those diacritics
I thought it useful to have them in a panel.

The first loop creates an object, buttons, adding buttons, setting the type size
of each button and each button's helptip. The helptip shows the Unicode value
associated with a button and of the character inserted when you press the
selected button.

93

The second loop installs a callback for every button. These callbacks are
responsible for inserting the character associated with the pressed button. Note
that in its current form, the window is dismissed when you click a button. If you
would like the window to stay on the screen, all you have to do is to remove
w.close(); in the one-but-last line.

#targetengine session;

try{
	 if (app.selection[0] instanceof InsertionPoint)
		 diacritics_panel ();
	 }
catch (_) {/* Not interested in errors. */};

function diacritics_panel ()
	 {
	 // CS5.5 and earlier:
	 // var w = new Window ("palette", "0x0300-0x036F", undefined, {resizeable: true});
	 // CS6 and later:
	 var w = new Window ("palette", "0x0300-0x036F");
		 var bsize = [0,0,30,40]; // Size of the buttons
		 var row, key, i, j, buttons = {};
		 // The ranges will make up the rows
		 var ranges = [[0x0300,0x030F],[0x0310,0x031F],[0x0320,0x032F],
			 [0x0330,0x033F],[0x0340,0x034F],[0x0350,0x035F],[0x0360,0x036F]];
		 for (i = 0; i < ranges.length; i++)
			 {
			 row = w.add ("group");
			 for (j = ranges[i][0]; j <= ranges[i][1]; j++)
				 {
				 key = ("0"+j.toString(16)).toUpperCase();
				 buttons[key] = row.add ("button", bsize, String.fromCharCode (j));
				 buttons[key].graphics.font = "palette:28";
				 buttons[key].helpTip = key;
				 }
			 }

		 for (i in buttons){
			 buttons[i].onClick = function () {app.selection[0].contents = this.text; w.close ();}
		 }
	 w.show();
	 }

Note: from CS6, it is no longer necessary to set resizeable to true in order to display the palette’s
title. Thus, the window can be created with its title shown as follows:

var w = new Window ("palette", "0x0300-0x036F");

94

Event handlers

Event handlers are comparable to callbacks in that they monitor what happens
in a dialog. They are more flexible, though with this added flexibility comes
some complexity. Event handlers are discussed from p. 149 of the Tools Guide.
Two examples here for illustration: one that monitors the mouse, another that
listens to the keyboard.

Monitoring the mouse

The first example shows how to monitor specific mouse events and some
environmental states:

var w = new Window ("dialog");
	 var b = w.add ("button", undefined, "Qwerty");

	 b.addEventListener ("click", function (k) {whatsup (k)});

	 function whatsup (p)
		 {
		 if (p.button == 2) {$.writeln ("Right-button clicked.")}
		 if (p.altKey) {$.writeln ("Alt key pressed.")}
		 $.writeln ("X: " + p.clientX);
		 $.writeln ("Y: " + p.clientY);
		 }
w.show ();

The event handler monitors the mouse and the button and whenever you click
the button, it executes the function defined in the handler, and can be seen as
onClick with some more possibilities.

The four properties whose value the script prints in the console are just
a selection; check the Tools Guide (p. 153) for a complete list. The example
shows that you can check whether the right button was clicked and whether
the Alt key was pressed when you clicked. clientX and clientY return values that
tell where on the control you clicked, so that you can tell, for example, whether
you clicked the left or the right half of the button.

Determining which button is pressed

If you have a group of buttons, you don't want to list a battery of onClick
callbacks to find which button was pressed. Instead, you can define an event
listener which monitors the group and if any of the buttons is pressed, returns
some propert of the button.

95

var w = new Window ("dialog");
	 var buttongroup = w.add ("group");
	 var panel1 = buttongroup.add ("panel", undefined, "Buttons");
		 for (var i = 0; i < 5; i++)
			 panel1.add ("button", undefined, "Button " + i);
	 var panel2 = buttongroup.add ("panel", undefined, "Knoppen");
		 for (var i = 0; i < 5; i++)
			 panel2.add ("button", undefined, "Button " + i);

	 buttongroup.addEventListener('click', button_pressed);

	 function button_pressed (e)
		 {
		 if (e.target.type == "button")
			 $.writeln (e.target.text + " from panel " + e.target.parent.text);
		 }

w.show();

The type-check is necessary because you could have clicked the panel just
outside a button. If you do that, ev.target.type would return panel, and the
check allows you to ignore everything that's not a button.

Listening to the keyboard

To listen to the keyboard, define an event listener using the keyboard event
keydown. Here is an example that prints some properties of the keyboard event
(this doesn't work properly when you target the ESTK):

var w = new Window ("dialog");
	 var edit = w.add ("edittext");
	 edit.active = true;
	 edit.characters = 30;
	 w.addEventListener ("keydown", function (kd) {pressed (kd)});

	 function pressed (k)
		 {
		 $.writeln (k.keyName);
		 $.writeln (k.keyIdentifier);
		 $.writeln (k.shiftKey ? "Shift pressed" : "Shift not pressed");
		 $.writeln (k.altKey ? "Alt pressed" : "Alt not pressed");
		 $.writeln (k.ctrlKey ? "Ctrl pressed" : "Ctrl not pressed");
		 }
w.show ();

96

Keys have (among other things) a name (A, B, Space, Minus, Shift), an identifier
(the hex value of the key in the form U+0000 or its name in the case of keys like
Shift), and properties that return the state of the Shift, Ctrl, and Alt keys.

Using the up and down arrow keys to change numerical data

In another example we can do something about the paucity of input methods.
The edittext control accepts just text, but with an event listener you can make
this contol behave a bit more like numerical input fields in which you can
increment or decrement values by pressing the up and down arrows. Holding
the shift key down while pressing an arrow key increases the step value by 10.
Here is the script:

var w = new Window ("dialog");
	 var e1 = w.add ("edittext", undefined, "1");
	 var e2 = w.add ("edittext", undefined, "1");
	 e1.characters = e2.characters = 3; e1.active = true;

	 function handle_key (key, control)
		 {
		 var step;
		 key.shiftKey ? step = 10 : step = 1;
		 switch (key.keyName)
			 {
			 case "Up": control.text = String(Number(control.text)+step); break;
			 case "Down": control.text = String(Number(control.text)-step);
			 }
		 } // handle_key

	 e1.addEventListener ("keydown", function (k) {handle_key (k, this);});
	 e2.addEventListener ("keydown", function (k) {handle_key (k, this);});

w.show();

The convoluted String(Number(control.text)+step) is necessary because we
can do arithmatic only with numbers while the edittext control accepts just text,
so we'll need to convert between numbers and text all the time. Anyway, the
function handle_key() that’s called by the event listener first checks if the Shift
key is pressed; if it is, the step value is set to 10, else it's set to 1.

Measurement controls are just a slight complication of this. The following script
adds measurement units to an input field. As you can see, it's now becoming

97

a general JavaScript issue. The script handles both bare numbers and numbers
followed by a measurement unit such as mm or pt.

var w = new Window ("dialog");
	 var e1 = w.add ("edittext", undefined, "1 mm");
	 var e2 = w.add ("edittext", undefined, "1 pt");

	 e1.characters = e2.characters = 5; e1.active = true;

	 function handle_key (key, control) {
		 var step;
		 key.shiftKey ? step = 10 : step = 1;
		 switch (key.keyName) {
			 case "Up": control.text = update (control.text, step); break;
			 case "Down": control.text = update (control.text, -step);
			 }
		 }

	 function update (str, incr) {
		 try {
			 var array = str.split(" ");
			 var num = String (Number (array[0])+incr);
			 if (array.length == 2) {num += " "+array[1];}
			 return num;
			 }
			 catch (_) {alert ("Illegal input"); return str;}
		 }

	 e1.addEventListener ("keydown", function (k) {handle_key (k, this)});
	 e2.addEventListener ("keydown", function (k) {handle_key (k, this)});

w.show();

The script simply hard-wires the units mm and pt, it doesn't look at the
document. Nor can you enter something like 4cm in the first field, to be
displayed as 40 mm. For a more Indesign-like approach, see the example
on p. 74.

Selecting items in dropdowns using the keyboard

An example of a concrete application is the slight improvement of ScriptUI's
dropdown control. In most dropdown lists, you can press a key to select an
item in the dropdown that starts with that key's corresponding letter (type t

98

and the first item starting with a t is displayed in the dropdown's control), but
unfortunately that doesn't work in ScriptUI. The remedy is to attach an event
listener to the drop-down that monitors keystrokes and selects the first list item
whose first letter matches the key press. Here is an example:

 var numbers = ["one", "two", "three", "thirty", "hundred"];
var w = new Window ("dialog", "Drop-down select");
	 var ddown = w.add ("dropdownlist", undefined, numbers);
	 ddown.minimumSize.width = 200;
	 ddown.selection = 0; ddown.active = true;

	 ddown.addEventListener ("keydown", function (k)
		 {
		 k = k.keyName.toLowerCase();
		 var i = 0;
		 while (i < numbers.length-1 && numbers[i].charAt(0).toLowerCase() != k)
			 {++i;}
		 if (numbers[i].charAt(0).toLowerCase() == k)
			 ddown.selection = i;
		 }
);
w.show ();

This mimics the behaviour of many dropdowns you encounter in InDesign but
also, for instance, on the web. If you type t, two is displayed in the list; if you
then type h, hundred is shown. In other words, any keypress matches just the
first letter of an item. Note: on Macs you need to define the event handler on
the window rather than on the dropdown.

But now that we're into event listeners we can do a bit better and mimic the
behaviour of more clever dropdowns, such as that in the font dropdown in
InDesign's Character panel. That list is like a type-ahead list, so that successive
keypresses match the beginning characters of a list item. You can then type your
way to an item, so to speak. Here is the script:

t >

h >

99

var numbers = ["one", "two", "three", "thirty", "hundred"];
var w = new Window ("dialog", "Drop-down select");
	 var ddown = w.add ("dropdownlist", undefined, numbers);
	 ddown.minimumSize.width = 200;
	 ddown.selection = 0; ddown.active = true;

	 var buffer = " ";
	 ddown.onActivate = function () {buffer = " "}

	 ddown.addEventListener ("keydown", function (k)
		 {
		 buffer += k.keyName.toLowerCase();
		 var i = 0;
		 while (i < numbers.length-1 && numbers[i].toLowerCase().indexOf (buffer) != 0)
			 {++i;}
		 if (numbers[i].toLowerCase().indexOf (buffer) == 0)
			 ddown.selection = i;
		 }
);

	 w.add ("button", undefined, "OK");
w.show ();

The script now remembers what we type in the variable called buffer. When
the script starts, this variable is initialised to an empty string. The event listener
adds our input to the buffer every time we press a key. Of course, when you
move away from the dropdown (by pressing Tab or clicking somewhere else in
the window) and then go back to the dropdown, you want to start afresh. That's
what the onActivate callback is for: when the dropdown is activated, the buffer
is emptied.

The dropdown's behaviour is now different. If you press t, two is highlighted as
before. But when you now type h, the script selects three in the list, not hundred
as before.

There's one problem, though: you can't use the backspace key to correct
a typing error. That's because when you press any key, its name is appended
to the buffer (except the Tab key). To correct an error, you need to move away
from the dropdown, go back to it, and start again. We would therefore like to
add something to the event listener that removes the buffer's last character if
the Backspace key is pressed, and adds a key's name only if the key's name is
a single letter. This last point is relevant because if you press the Shift key, shift is
added to the buffer. Here is the revised script:

t >

h >

On Macs there appear to be some problems with
adding the event handler to the dropdown list. These
problems can be avoided by adding the handler to
the window, though that in itself is not unproblematic.
See https://forums.adobe.com/thread/1705713 for
the discussion.

https://forums.adobe.com/thread/1705713

100

var array = ["one", "two", "three", "thirty", "hundred"];
var w = new Window ("dialog", "Drop-down select");
	 var ddown = w.add ("dropdownlist", undefined, array);
	 ddown.minimumSize.width = 200;
	 ddown.selection = 0; ddown.active = true;

	 var buffer = " ";
	 ddown.onActivate = ddown.onDeactivate = function () {buffer = " ";}

	 ddown.addEventListener ("keydown", function (k)
		 {
		 if (k.keyName == "Backspace")
			 buffer = buffer.replace (/.$/, " ");
		 else
			 if (k.keyName.length > 0)
				 buffer += k.keyName.toLowerCase();
		 var i = 0;
		 while (i < array.length-1 && array[i].toLowerCase().indexOf (buffer) != 0) {++i;}
		 if (array[i].toLowerCase().indexOf (buffer) == 0)
			 ddown.selection = i;
		 }
);
	 w.add ("button", undefined, "OK");
w.show ();

Note that we changed the callback, too, so that the buffer is reset on activation
and on deactivation of the dropdown.

Validating input

There are several ways to validate the content of an edittext control. The
simplest is simply to disable a window’s OK button so that the user can't click
OK while the edittext's content is not acceptable. For instance, if you ask the
user to enter the name for a new text anchor, the simplest way to make sure
that they provide a name that's not already in use is to check at every key press
whether a text anchor with that name exists. In the following example, entering
the last 3 creates a name that matches an existing name and the OK button is
disabled. (This validation method and the one using a change of background
colour is based on a script by Bob Stucky.)

101

var w = new Window ('dialog', 'New text anchor');
	 w.group = w.add ('group');
		 w.group.add ('statictext {text: "New name:"}');
		 w.input = w.group.add ('edittext {characters: 20, active: true}');

		 w.buttons = w.add ('group {alignment: "right"}');
			 w.ok = w.buttons.add ('button {text: "OK", enabled: false}');
			 w.buttons.add ('button {text: "Cancel"}');

	 w.input.onChanging = function () {
		 w.ok.enabled = !app.activeDocument.hyperlinkTextDestinations.item
			 (w.input.text).isValid;
	 }

if (w.show() == 1 && w.input.text.length > 0) {
	 app.activeDocument.hyperlinkTextDestinations.add (app.selection[0],
		 {name: w.input.text});
}

If a window contains many fields it's often helpful to emphasise an edittext
control by changing its background color so that it's easier to spot. This, too, can
be done while the user enters data:

var w = new Window ('dialog');
	 w.group = w.add ('group');
		 w.group.add ('statictext {text: "Enter a number:"}');
		 w.input = w.group.add ('edittext {characters: 10, active: true, justify: "right"}');

		 w.buttons = w.add ('group {alignment: "right"}');
			 w.ok = w.buttons.add ('button {text: "OK", enabled: false}');
			 w.buttons.add ('button {text: "Cancel"}');

	 w.input.onChanging = function () {
		 var valid = /^[\d.,]+$/.test (w.input.text);
		 this.graphics.backgroundColor = this.graphics.newBrush (this.graphics.BrushType.
			 SOLID_COLOR, valid ? [1, 1, 1, 1] : [1, 0.5, 0.5, 1]);
		 w.ok.enabled = valid;
	 }

w.show();

As soon as the user enters a character that's not a digit, dot, or comma, the
background is changed to red. When the illegal character is removed, the
window goes back to normal.

102

Three-state checkboxes: Sprites

ScriptUI's checkbox controls are two-state: on or off. But in many cases – in
InDesign anyway – a text selection, for example, can be in three states: on, off,
or mixed. ScriptUI doesn’t provide anything natively for three-state boxes, but
with some (considerable) effort those three-state checkboxes can be added to
a ScriptUI panel.

The idea behind this is to create a so-called sprite, as was shown by Marc Autret
(see his blog on the subject). The technique is a viewport approach (see also

"Scrolling panels and groups" on page 72): create a graphic that shows the
three states, add an image control in a ScriptUI window that’s (in our case)
a third of the width of the image (that's in fact the viewport), and add an event
listener that slides the image horizontally.

The script, below, relies heavily on Marc’s method. For the sprite I use three
graphics: one for CS6, one for the CC light interface, and the third for the CC
dark interface. They must be separate because the CS6 boxes are bigger. The CC
graphics could be combined but the way it is now, it's easy to add graphics for
other shades of interface. (For myself I use strings instead of graphic files, but
the strings are much too long to use here in this guide.)

The script’s window is very small. It can be used in the same way that InDesign's
three-state checkboxes are used: it shows the state of the current selection and
can be used to change the current selection's nobreak state.

#targetengine nobreak;

(function () {

	 var windowName;
	 var nobreakWindow;

	 //---
	 // Slightly adapted from Marc Autret's
	 // http://www.indiscripts.com/post/2011/04/sprite-buttons-in-scriptui
	 // All comments in this section are Marc's.
	 // ScriptUI Image Offset Fixer in InDesign CS6 and earlier
	 // (this bug was solved in CC i.e. ScriptUI 6.2.x)
	
	 var CC_FLAG = parseInt(app.version) >= 9 ? 1 : 0;
	 var FIX_OFFSET = CC_FLAG ? 0 : 1;

The red frame represents the
ScriptUI image object. The
graphic is moved horizontally.
Because the image object is
a third of the graphic's width,
only one state is ever shown.

CC-style

CS6-style

http://www.indiscripts.com/post/2011/04/sprite-buttons-in-scriptui

103

	 // Force an Image widget to repaint (= onDraw trigger)
	 // CC: we need to temporarily change the size
	 // (layout.layout(1) does not work anymore in CC)
	 // CS4-CS6: just reassign this.size

	 Image.prototype.refresh = function() {
		 if (CC_FLAG) {
			 var wh = this.size;
			 this.size = [1+wh[0], 1+wh[1]];
			 this.size = [wh[0], wh[1]];
			 wh = null;
		 } else {
			 this.size = [this.size[0], this.size[1]];
		 }
	 }	

	 // Three different sprites: CS6, light CC, and dark CC ---

	 function threeWayCheckboxImage() {
		 if (parseInt (app.version) < 9) {
			 return File ('/D/icons/off_on_mixed_CS6.png');
		 } else if (app.generalPreferences.uiBrightnessPreference == 1) {
			 return File ('/D/icons/off_on_mixed_CC_light.png');
		 } else {
			 return File ('/D/icons/off_on_mixed_CC_dark.png');
		 }
	 }

	 // Check if there's a selection and if there is, if it's valid -------------------------------------

	 function noBreakApplies () {
		 return app.windows.length > 0 && app.documents.length > 0
			 && app.selection.length > 0 && app.selection[0].hasOwnProperty('noBreak');
	 }

	 // Return the nobreak state of the current selection ---

	 function getNoBreakState () {
		 var ret;
		 if (!noBreakApplies()) {
			 ret = 0;
		 } else if (app.selection[0] instanceof InsertionPoint) {
			 ret = app.selection[0].underline ? 1 : 0;

104

		 } else {
			 var txt = app.selection[0].textStyleRanges.everyItem().underline.join(' ');
			 if (txt.indexOf ('true') > -1 && txt.indexOf ('false') > -1) {
				 ret = 2;
			 } else if (txt.indexOf ('true') > -1) {
				 ret = 1;
			 } else {
				 ret= 0;
			 }
		 }
		 return ret;
	 }

	 function updateNobreak () {
		 var w = Window.find ('palette', windowName);
		 w.cbox.state = getNoBreakState();
		 w.cbox.refresh();
	 }

	 // Create a window ---

	 function defineNobreakWindow (name) {
		 var w = new Window ('palette');
			 w.text = name;
			 var checkBoxGroup = w.add ('group');
				 var boxWindow = checkBoxGroup.add ('group');
					 w.cbox = boxWindow.add ('image', undefined, threeWayCheckboxImage());
					 w.cbox.state = 0;
					 checkBoxGroup.add ('statictext {text: "No break"}');

			 // Three-way checkbox handlers ---
			 var iSize = w.cbox.image.size;
			 var spriteWidth = iSize[0] / 3;

			 w.cbox.size = [spriteWidth, iSize[1]];

			 w.cbox.onDraw = function(){
				 var dx = this.state * spriteWidth + FIX_OFFSET;
				 this.graphics.drawImage (this.image, -dx, 0);
			 };

			 var mouseEventHandler = function(){
				 if (noBreakApplies()) {

105

					 switch (this.state) {
						 case 0: case 2: app.selection[0].noBreak = true; this.state = 1; this.refresh(); break;
						 case 1 : app.selection[0].noBreak = false; this.state = 2; this.refresh(); break;
					 }
				 }
			 };

			 w.cbox.addEventListener ('click', mouseEventHandler);

		 return w;
	 }

	 //--
	 windowName = 'No break';
	 nobreakWindow = Window.find ('palette', windowName);
	 if (nobreakWindow === null){
		 nobreakWindow = defineNobreakWindow (windowName);
		 app.addEventListener ('afterSelectionChanged', updateNobreak);
	 }
	 updateNobreak();
	 nobreakWindow.show();
}());

Size and location

There are two ways to determine the size and the location of a window and all
its children: automatically and manually. The automatic method uses ScriptUI’s
layout manager and, since it does a pretty good job most of the time, is by far
the easiest way to create windows. The manual method involves specifing the
size and position of all controls, which can turn into a nightmare if you decide to
change the type and typesize of one or more controls, or when you change the
window’s layout. In this section, therefore, we deal almost exclusively with the
way the layout manager goes about its business. Here and there we’ll use bits of
the manual method when it’s convenient, but that doesn’t happen very much.

Much of what we describe here is well documented in the Guide, but several
aspects remain unclear there.

Size

By default, windows are placed in the centre of the screen and its controls are
centred in their containers, both horizontally and vertically. Size and position
can be stated in several different formats, which are mere notational variants:

106

	 var w = new Window ("dialog");
		 w.preferredSize = [300, 400];

		 w.preferredSize = {width: 300, height: 400}
		 w.preferredSize = "width: 300, height: 400";

		 w.preferredSize.width = 300;
		 w.preferredSize.height = 400;

		 w.preferredSize[0] = 300;
		 w.preferredSize[1] = 400;

		 w.preferredSize = [300, " "];	 // set just the width
		 w.preferredSize = [" ", 400];	// set just the height
w.show()

As with all JavaScript arrays and objects, the array notation is ordered ([width,
height]), the object notation is not. The format of last two are not very useful
here, but will come in handy later on when we deal with alignments.

preferredSize tells the layout manager to aim at a certain size. To fix the size,
use size. But the size can (often) be set only when the window is being drawn,
so that size must be used inside an onShow callback:

var w = new Window ("dialog");
w.onShow = function () {w.size = {width: 300, height: 400}}
w.show();

All the notations available for preferredSize can be used for size, too:

	 w.size = [300, 400];

	 w.size = {width: 300, height: 400};
	 w.size = "width: 300, height: 400";

	 w.size.width = 300;
	 w.size.height = 400;

	 w.size[0] = 300;
	 w.size[1] = 400;

Location

A window's location is set with the location property. This one, too, can be used
with the several notational variants:

107

var w = new Window ("dialog");
	 // either of the following three:
	 w.location = [100, 200];
	 w.location = {x:100, y:200};
	 w.location = "x:100, y:200";
w.show();

The w.location.x = and w.location[0] = formats are possible only in onShow
callbacks:

var w = new Window ("dialog");

	 w.onShow = function ()
		 {
		 w.location.x = 100;
		 w.location.y = 200;
		 }

w.show();

Bounds

Size and location together make up a contol’s bounds, which are presented as
a four-element array:

var w = new Window ("dialog");
	 // either of the following three
	 w.bounds = [100, 200, 300, 400];
	 w.bounds = {left: 100, top: 200, right: 300, bottom: 400}
	 w.bounds = "left: 100, top: 200, right: 300, bottom: 400";
w.show();

As with all controls, using the array notation, bounds can be included in the
control’s definition:

var w = new Window ("dialog", " Title", [100, 200, 300, 400]);
w.show();

A window’s bounds exclude the frame, so when you place a window at the top
left of a screen you should allow for the frame. The window’s bounds including
the frame are returned by frameBounds. This script prints a window’s bounds
and frame bounds in the console:

108

var w = new Window ('dialog', ' ', [100, 200, 300, 400]);
	 $.writeln ('Bounds: ' + w.bounds)
	 $.writeln ('Frame bounds: ' + w.frameBounds)
w.show();

The output shows that the left, right, and bottom frame are 3 units wide, and
that the top of the frame is 30 units.

Maximum size

Maximum size is needed to prevent controls from disappearing off the screen.
This could happen, for example, with long lists. The following script displays
a list of 100 items in a list box, but the screen is clearly not tall enough to
accommodate that list: it manages 61 items on my screen.

var w = new Window ('dialog');
	 var list = w.add ('listbox');
	 for (var i = 0; i < 100; i++)
		 list.add ('item {text: ' + i + '}');
w.show();

What we want is to set a maximum height to the list. But, naturally, we first need
to know the maximum size of the dialog. To find that height, run the following
script:

var w = new Window ('dialog');
	 $.writeln (w.maximumSize.height);

On my PC this prints 1150 to the console. You can use this value to set the list's
maximum height, but you'll see that the list still spills over the window because
of the top and bottom frameBounds. After some experimentation, 1100 turns
out to work well for me. To keep the script general, rather than hard wiring
a value, we now say that the lists's maximum height should the the window's
maximum height minus 50:

var w = new Window ('dialog');
	 var list = w.add ('listbox');
	 for (var i = 0; i < 100; i++)
		 list.add ('item {text: ' + i + '}');
	 list.maximumSize.height = w.maximumSize.height - 50;
w.show();

Bounds: 100,200,300,400
Frame bounds: 97,170,303,403

109

Predictably, apart from height, maximumSize has a property width as well. In
my experience, maximumSize.width isn't needed as much as maximumSize.
height – I use it only for resizeable windows.

But if you use a dual-monitor system, you may be in for a surprise:
maximumSize.width considers both screens as one. For example, I have
two 24-inch 1920 × 1200 screens next to each other. The window property
maximumSize.height correctly returns 1150 (1200 minus 50 for system
overhead), but maximumSize.width tells me that my window is 3790 pixels
wide. In itself this is correct because you could drag a window across two
screens, but you need to be aware of this if, for instance, you want to position
a window at the right-hand side of the screen on the left.

To get the correct value for the maximum width of a screen, you need to use
$.screens, which returns an array of objects representing screen coordinates.
Note that this is part of the ESTK, not ScriptUI. The following script lists the
coordinates of all screens, in this case, two:

for (var i = 0; i < $.screens.length; i++)
	 {
	 $.writeln ("Screen " + i);
	 $.writeln ("top: " + $.screens[i].top);
	 $.writeln ("left: " + $.screens[i].left);
	 $.writeln ("bottom: " + $.screens[i].bottom);
	 $.writeln ("right: " + $.screens[i].right);
	 }

So the maximum width of windows placed on the first screen is about 1900.

Minimum size

Use minimumSize to set a control's minimum width and height. Its values are
set in the same way as preferredSize and maximumSize. I use minimumSize
especially in resizable windows; for an example, see "Resizing windows" on
page 112.

Orientation

Containers can have either of three orientations: row, column, or stack.
Windows and panels default to column, groups to row orientation. These are
entirely straightforward. Stack orientation, on the other hand (in InDesign), has
suffered from an inconsistency between Macs and Windows PCs up to and
including CS6. In that environment, when you stack two controls, the second
object drawn is placed behind the first control, but on Macs the second control

Screen 0
top: 0
left: 0
bottom: 1200
right: 1920
 
Screen 1
top: 0
left: 1920
bottom: 1200
right: 3840

110

is placed in front of the first control. When you use stack you should therefore
do a platform check and on Windows, also do a version check. The following
script illustrates:

var w = new Window ('dialog');
	 w.orientation = 'stack';
	 if ($.os.indexOf ('Windows') >-1 && parseInt (app.version) < 9)	 {
		 // On Windows, before CC
		 w.add ('button');
		 w.add ('edittext {preferredSize: [200, 100]}')
	 } 	else {// On Mac or on Windows from CC
		 w.add ('edittext {preferredSize: [200, 100]}')
		 w.add ('button');
	 }
w.show();

Margins and spacing

Margins define the space between a container's edges and its children. Margins
can be set in the familiar way:

w.margins = [0, 0, 0, 0];
w.margins = 0;	 // same effect as previous line
w.margins.left = 0;

The order of the four values in the margins array is [left, top, right, bottom].

Spacing defines the space between a container's children. The scripts below
illustrate:

111

var w = new Window ('dialog');
	 p1 = w.add ('edittext {preferredSize: [200, 100], properties: {multiline: true}}');
	 p2 = w.add ('edittext {preferredSize: [200, 100], properties: {multiline: true}}');
	 p1.text = 'Margins: default\rSpacing: default'
w.show ();

var w = new Window ('dialog');
	 w.margins = 0;
	 p1 = w.add ('edittext {preferredSize: [200, 100], properties: {multiline: true}}');
	 p2 = w.add ('edittext {preferredSize: [200, 100], properties: {multiline: true}}');
	 p1.text = 'Margins: 0\rSpacing: default'
w.show ();

var w = new Window ('dialog');
	 w.margins = 0;
	 w.spacing = 0
	 p1 = w.add ('edittext {preferredSize: [200, 100], properties: {multiline: true}}');
	 p2 = w.add ('edittext {preferredSize: [200, 100], properties: {multiline: true}}');
	 p1.text = 'Margins: 0\rSpacing: 0'
w.show ();

alignment

Alignment is set the horizontal or vertical alignment of a single control.
Horizontal alignments are left, right, center, and fill.

var w = new Window ('dialog {preferredSize: [250, " "]}');
	 var b = w.add ('button'); b.alignment = 'left';
	 var b = w.add ('button'); b.alignment = 'center';
	 var b = w.add ('button'); b.alignment = 'right';
	 var b = w.add ('button'); b.alignment = 'fill';
w.show();

Vertical alignments are top, center, bottom, and fill.

var w = new Window ('dialog {preferredSize: [" ", 150], orientation: "row"}');
	 var b = w.add ('button'); b.alignment = [" ", 'top'];
	 var b = w.add ('button'); b.alignment = [" ", 'center'];
	 var b = w.add ('button'); b.alignment = [" ", 'bottom'];
	 var b = w.add ('button'); b.alignment = [" ", 'fill'];
w.show();

112

Notice that vertical alignment is set by using the second element of the
alignment array. If you want to set just the vertical alignment, leave the
horizontal alignment – the first element – undefined, as in this example.

alignChildren

alignment sets the alignment of a single control. To set the alignment of all
children in a container (a window, group, or panel), use alignChildren. This is
useful, for instance, to make all buttons in a group the same width, as in the
following script.

var w = new Window ('dialog {orientation: "row", alignChildren: [" ", "top"]}');
	 w.add ('panel {preferredSize: [150, 200]}');
	 var g = w.add ('group {orientation: "column"}');
		 g.alignChildren = "fill";
		 g.add ('button {text: "Auto"}');
		 g.add ('button {text: "Instant preview"}');
		 g.add ('button {text: "OK"}');
		 g.add ('button {text: "Cancel"}');
w.show();

Instead of setting each button's horizontal alignment to fill, here we set the
group's alignChildren value, which transfers the alignment to all the group's
children.

As with alignment, to set a horizontal value for alignChildren we can simply
give that value as a string ('left', 'center', 'right', 'fill'), as in the above example;
and again, to set just a vertical value for alignChildren we need to use the
second element in an array, as in

g.alignChildren = [" ", "fill"];

Resizing windows

Moving a window is easy: just grab the window's title bar and drag it to
somewhere else on the screen. This is useful when the window covers what you
were looking at.

It can also be useful to make windows resizable, but that's a bit more
complicated. The script below shows a simple window which can be resized. It
draws a window with an edit field and a group with three buttons in it. The user
can resize the window in the usual way by clicking on a corner or a side of the
window's frame and dragging it left, right, up, or down.

Without g.alignChildren = 'fill' With g.alignChildren = 'fill'

113

The window has two main alements, the edittext control and the group with
three buttons. The size of the button group not specified, and by setting the
alignment of the edittext control to ["fill", "fill"] we say in effect that it should
always take up all the available space of the window – that is, the space in the
window minus the space taken by the button group.

The first thing to do to make a window resizeable is to include the creation
property {resizeable: true}. In addition, the script needs the callback onResizing,
which monitors whether the window is being resized; if it is, the window is
redrawn. (Marc Autret reports that on a Mac you need onResize as well.)

var w = new Window ("dialog", "Resize", undefined, {resizeable: true});
	 w.orientation = "row";

	 var e = w.add ('edittext')
		 e.alignment = ["fill", "fill"];
		 e.minimumSize = [300, 200];

	 var g = w.add ('group {orientation: "column"}');
		 g.alignment = ['right', 'top'];
		 g.alignChildren = 'fill';

		 g.add ('button {text: "This"}');
		 g.add ('button {text: "That"}');
		 g.add ('button {text: "And the other"}');

	 // onResize needed on Mac OS X

	 w.onResizing = w.onResize = function () {this.layout.resize ();}
	
	 w.onShow = function ()
		 {
		 w.minimumSize = w.size;
		 }

w.show ();

Another important step is the calculation of the minimum size of the window.
We do this in the onShow callback. onShow determines the layout by
calculating it, and at that point we can say that the window's minumum size is
the size it has when it was first drawn.

Note: resizing appears not to work too well using the above script in CS6 on
Windows 8.1. A remedy was suggested by Lukas Sommer, which works fine on
Windows 7 too. The change is a different formulation of the onShow callback:

114

w.onShow = function () {
	 w.minimumSize = w.size; // define the initial standard size as minimum size
	 for (var i = 0; i < w.children.length; i++) {
		 w.children[i].minimumSize = w.children[i].size;
	 }
}

It amounts to setting the minimum size not only of the container but also of all
its children.

The orientation of a window (or group, panel) can be changed dynamically
when a window is resized. The following script arranges the two defined
buttons horizontally or vertically depending on the shape of the window:

w = new Window ('dialog', 'Test', undefined, {resizeable: true})
	 w.alignChildren = ['fill', 'fill'];
	 w.add ('button {text: "Button 1"}');
	 w.add ('button {text: "Button 2"}');
	
	 w.onResizing = w.onResize = function () {
		 w.orientation = w.size.width > w.size.height ? 'row' : 'column';
		 w.layout.resize ();
	 }

	 w.onShow = function () {
		 w.layout.resize ();
	 }

w.show();

All that's needed is to check the shape of the container and change its
orientation accordingly.

For a flowchart and a draft outline of ScriptUI's layout manager, see Marc
Autret's outline.

Coding styles: resource string and code based

The coding style in the examples given so far is sometimes called code based.
This is the style I use most of the time because I think it's the more convenient
one. There are however two other, distinct, styles, and the choice between them
appears to be informed mainly by taste.

http://indiscripts.com/blog/public/LayoutManager-Draft.pdf

115

Resource string

The first alternative is the so-called resource string, in which the whole window
is presented as a single string that defines the window's characteristics as an
object. The script below is the script in p. 8 recast using a resource string.

Proponents of this style make the point that using resource strings encourages
the coder to separate the window's design from its functional component.
This is clear in the example: the resource string states only how the window
looks, not what happens when you press a button or type something in a field.
Whether this is a valid point is a matter of taste. A clear advantage, however, is
that resource strings make for very compact code (though in this example that's
not entirely clear).

A disadvantage of resource strings is that they can be very hard to debug if you
make an error, mainly because the ESTK's error messages aren't particularly
helpful. In addition, I find it easier to change a window’s layout using the code-
based style.

As mentioned earlier, which style you choose is determined mainly by taste.
Here is our previous example using the resource-based style:

function myInput () 	{
	 var winResource =
		 "dialog {text: 'Form', \
			 myInput: Group {\
				 n: StaticText {text: 'Name:'},\
				 myText: EditText {text: 'John', characters: 20, active: true}\
			 },\
			 myButtonGroup: Group {alignment: 'right',\
				 b1: Button {text: 'OK'},\
				 b2: Button {text: 'Cancel'}\
			 }\
		 }";
	 var myWindow = new Window (winResource);
	 if (myWindow.show () == 1) {
		 return myWindow.myInput.myText.text;
	 }
}

Since the resource string defines a complex object, you refer to any property as
you would any JavaScript property, as in this line:

return myWindow.myInput.myText.text;

116

Note that capitalisation is slightly different: use Button and StaticText, not
button and statictext – the names of controls and properties are case-sensitive
in different ways depending on the coding style.

Code-based object

The second alternative, which I dub ‘object code’ for lack of a better term, is in
a way a mix of the two other styles: it doesn't use a resource code, but it does
define the window as a complex object. This is illustrated in the following
example, which is again the script on p. 8, with just the variable names
abbreviated to keep things manageable. And this is the main reason why I don't
use this style: it can get terribly verbose. An advantage of this style may be that
you use just one variable, namely, the one to create the window.

function myInput () 	{
	 var win = new Window ("dialog", "Form");
		 win.inpGrp = win.add ("group");
			 win.inpGrp.add ("statictext", undefined, "Name:");
			 win.inpGrp.txt = win.inpGrp.add ("edittext", undefined, "John");
			 win.inpGrp.txt.characters = 20;
			 win.inpGrp.active = true;
		 win.btnGrp = win.add ("group");
			 win.btnGrp.alignment = "right";
			 win.btnGrp.add ("button", undefined, "OK");
			 win.btnGrp.add ("button", undefined, "Cancel");
	 if (win.show () == 1) {
		 return win.inpGrp.txt.text;
	 }
	 exit ();
}

If you want to refer to very deeply embedded controls, you can set their name
property and use findElement() to get a quick reference. For instance, if you
change the edittext control in the above script as follows:

win.inpGrp.txt = win.inpGrp.add ("edittext", undefined, "John", {name: "personname"});

you can then get a quick reference to that control with this line:

var bloke = win.findElement ("personname");

An alternative to this style is to use with statements, as in the forrowing
example:

117

function myInput () 	{
	 var win = new Window ('dialog', 'Form');
		 with (win) {
			 with (add ('group')) {
				 add ('statictext {text: "Name:"}');
				 add ('edittext {text: "John", characters: 20, active: true, properties: {name:

"person"}}');
			 }
			 with (add ("group")) {
				 add ('button {text: "OK"}');
				 add ('button {text: "Cancel"}');
			 }
		 }
	 if (win.show () == 1) {
		 return win.findElement('person').text;
	 }
	 exit ();
}

Mixing styles

The two styles can be mixed. The following example is still the same script, but
this incarnation is essentially code-based with a few resource strings thrown in:

function myInput () 	{
	 var win = new Window ("dialog", "Form");
		 var inpGrp = win.add ("group");
			 inpGrp.add ("statictext {text: 'Name:'}");
			 var myText = inpGrp.add ("edittext {text: 'John', characters: 20, active: true}");
		 win.btnGrp = win.add ("group {alignment: 'right'}");
			 win.btnGrp.add ("button {text: 'OK'}");
			 win.btnGrp.add ("button {text: 'Cancel'}");
	 if (win.show () == 1) {
		 return myText.text;
	 }
	 exit ();
}

I find myself using this hybrid form more and more because it is compact and
the code is still easy to debug. In some cases the mixed method is easier to
read. For example, in a code-based approach the properties of a slider are set as
follows:

var slider = w.add ("slider", undefined, 50, 0, 100);

118

You have to remember the order in which the start, minimum, and maximum
values are given (50, 0, and 100, respectively, in the example). An much clearer
alternative to this is the following, still code-based, version:

var slider = w.add ("slider");
	 slider.minvalue = 0;
	 slider.maxvalue = 100;
	 slider.value = 50;

The mixed style, on the other hand, is more compact and just as easy to
understand:

var slider = w.add ("slider {value: 50, minvalue: 0, maxvalue: 100}");

As with all JavaScript objects, the order in which the properties are given is
immaterial.

What has eluded me a long time is how to set a single preferred size in
a resource string. You can't do any of the following:

e = w.add ('edittext {preferredSize.width: 150}')	 // All these are wrong
e = w.add ('edittext {preferredSize[0]: 150}')
e = w.add ('edittext {preferredSize {width: 150}}')

By chance I found that -1 can be used as the default value for a control. In the
following example the control's width is set to 150, the height is set to the
default:

e = w.add ('edittext {preferredSize: [150, -1]}')

Other controls allow 'undefined' (see "Setting the size of controls" on page
119); edittext allows just -1.

Creation properties

In code-based styles, creation properties are included in the line that creates
an object, other properties are stated after the control’s creation (see "Creation
properties and other properties" on page 10 for further details). Example:

var w = new Window ("dialog");
	 var b = w.add ("button", undefined, "Continue", {name: "ok"});
	 b.alignment = "fill";
w.show();

In mixed style, the button could be defined as follows:

119

var w = new Window ("dialog");
	 var b = w.add ('button {text: "Continue", alignment: "fill", properties: {name: "ok"}}');
w.show();

Setting the size of controls

Sometimes you want to set just one dimension of a control. To set a control's
width, for example, and let its height be determined by ScriptUI's layout
manager, you would use myControl.preferredSize.width = 200, as in the
following script:

var w = new Window ("dialog");
	 var panel = w.add ("panel");
		 panel.preferredSize.width = 200;
	 panel.add ('button');
	 panel.add ('button');
w.show();

In a mixed style, however, you can't use .width, and you have to use the array
notation and leave one element unspecified. In our example we want to set
the width, which is the first element in the two-element array, so we leave the
second element, which defined the height, undefined (we could have used -1
here, too, or leave it out altogether):

var w = new Window ("dialog");
	 // All three variants work:
	 var panel = w.add ("panel {preferredSize: [200, undefined]}");
	 var panel = w.add ("panel {preferredSize: [200, -1]}");
	 var panel = w.add ("panel {preferredSize: [200,]}");
	 panel.add ('button');
	 panel.add ('button');
w.show();

Displaying properties and methods

The properties and methods associated with all controls are listed in the Tools
Guide but the guide has not always been accurate, presumably because of
changes to ScriptUI after the Guides had been finished. In addition, ScriptUI has
its own entry in the ESTK's object-model viewer – press F1 in the ESTK to access
it. This is more reliable than the PDF.

For a convenient way to get a quick overview of which properties and methods
are available for a particular control, you can use the two functions in the
following script. The first few lines of the script define a simple dialog with

120

just one edittext control. A call to prop() prints all properties and their current
values. A call to meth() prints a similar list for all methods (bold added).

var w = new Window ("dialog");
	 var e = w.add("edittext", undefined, "Cats");
	 prop(e);
	 meth(e);
//~ w.show ();

function prop (f)
	 {
	 $.writeln (f.reflect.name);
	 var props = f.reflect.properties;
	 var array = [];
	 for (var i = 0; i < props.length; i++)
		 try {array.push (props[i].name + ": " + f[props[i].name])} catch (_){}
	 array.sort ();
	 $.writeln (array.join ("\r"));
	 }

function meth (m)
	 {
	 var props = m.reflect.methods.sort();
	 $.writeln ("\rMethods");
	 for (var i = 0; i < props.length; i++)
		 $.writeln (props[i].name);
	 }

It's a simple list without any clarification. Nevertheless, I find it useful to print
a quick overview of a control's properties (you can use the script to display
properties and methods in the object models of all CS and CC applications, not
just ScriptUI).

Some of the properties are objects themselves, and these can be displayed, too.
For example, change prop(e) in the third line of the script as follows to print
a list of just the ScriptUIGraphics object:

prop (e.graphics);

Resources

Virtually the only real comprehensive ScriptUI resource is the dedicated chapter
in the Tools Guide that comes with the ESTK; you can find it in the ESTK’s Help
menu. This is a PDF file called JavaScript Tools Guide CSx/CC.pdf.

EditText
active: false
alignment: undefined
bounds: undefined
characters: undefined
children:
enabled: true
graphics: [object ScriptUIGraphics]
helpTip:
indent: undefined
justify: left
location: undefined
maximumSize: 3790,1150
minimumSize: 0,0
parent: [object Window]
preferredSize: 35,20
properties: undefined
shortcutKey: undefined
size: undefined
text: Cats
textselection:
type: edittext
visible: true
window: [object Window]
windowBounds: 0,0,100,30

Methods
addEventListener
dispatchEvent
hide
notify
removeEventListener
show

ScriptUIGraphics
BrushType: [object Object]
PenType: [object Object]
backgroundColor: undefined
currentPath: [object ScriptUIPath]
currentPoint: undefined
disabledBackgroundColor: undefined
disabledForegroundColor: undefined
font: Tahoma:12.0
foregroundColor: undefined

121

Using the ESTK's object-model viewer you can browse the ScriptUI object
model. And Jongware's fabulous CS object browsers include a version for
ScriptUI (see http://www.jongware.com/idjshelp.html).

Another source of information is the collection of sample scripts that comes
with the ESTK, and which are listed on the first page of the ScriptUI chapter
in the Tools Guide. To find these scripts, search your hard disk for a file with
the name one of them (e.g. ColorPicker.jsx): their location depends on your
operating system and CS version.

A more interesting collection of scripts are those that can be found in the ESTK’s
Required subdirectory. The scripts there form the basis of the ESTK’s interface
and use ScriptUI for their dialogs and other windows. This is a fascinating
collection, with many instructive techniques. Do not on any account change
these scripts. The location of the scripts depends on your OS and CS/CC version.
To find the folder, search your disk for a script called 35OMVui.jsx.

Bob Stucky has collected a number of educational scripts here: http://www.
creativescripting.net/freeStuff/ScriptUI_Validation.zip.

For help, go to Adobe's scripting forum (http://forums.adobe.com/community/
indesign/indesign_scripting), where there's always someone at hand to help
with problems. There is also a dedicated ScriptUI forum at http://forums.scriptui.
com/.

Apart from that (and the present text), information can be found in some blogs
and forums, some of which I list below (If you know of any useful blogs and links,
please let me know).

Blogs

The following blogs feature several items and script examples dealing with
ScriptUI:

– Marc Autret’s Indiscript: http://www.indiscripts.com/
– Marijan Tompa’s InDesign Snippets: http://indisnip.wordpress.com/
– "milligram" ’s collection at http://www.milligramme.cc/wp/archives/tag/

scriptui (this site is in Japanese, a vaguely competent translator is provided).
– Loïc Aigon’s Scriptopedia at http://www.scriptopedia.org/ and his more

personal http://www.loicaigon.com/blog/ (both are in French and English and
cover InDesign, Illustrator, Photoshop, and Acrobat).

– Gerald Singelmann's site at http://indesign-faq.de/, a bilingual blog with
several interesting scripts with ScriptUI solutions.

– Davide Barranca (http://www.davidebarranca.com) writes about Photoshop
and Bridge. See especially http://www.davidebarranca.com/2012/10/scriptui-

http://www.jongware.com/idjshelp.html
http://www.creativescripting.net/freeStuff/ScriptUI_Validation.zip
http://www.creativescripting.net/freeStuff/ScriptUI_Validation.zip
http://forums.adobe.com/community/indesign/indesign_scripting
http://forums.adobe.com/community/indesign/indesign_scripting
http://www.indiscripts.com/
http://indisnip.wordpress.com/
http://www.milligramme.cc/wp/archives/tag/scriptui
http://www.milligramme.cc/wp/archives/tag/scriptui
http://www.scriptopedia.org/
http://www.loicaigon.com/blog/
http://indesign-faq.de/
http://www.davidebarranca.com/2012/10/scriptui-window-in-photoshop-palette-vs-dialog/

122

window-in-photoshop-palette-vs-dialog/ and http://www.davidebarranca.
com/2012/11/scriptui-bridgetalk-persistent-window-examples/ for persistent
windows in Photoshop and Bridge, respectively. http://www.davidebarranca.
com/2015/06/html-panel-tips-17-cc2015-survival-guide/ is basically about
HTML panels, but has some comments about ScriptUI as well (see especially
point 8).

Useful forum topics

Some useful topics are floating around here and there, many of them in Adobe's
scripting forum (http://forums.adobe.com/community/indesign/indesign_
scripting), but Marc Autret's blog (www.indiscripts.com) has a growing number
of instructive articles on ScriptUI. In the list below I've grouped a number of
ScriptUI topics dealt with in the forums.

Differences between Mac OS and Windows: palettes and windows
http://forums.adobe.com/thread/1103569?tstart=0

Change the colour of the background of buttons
http://forums.adobe.com/message/2335096#2335096

Resize windows
http://forums.adobe.com/message/2280793#2280793
http://forums.adobe.com/message/2741942#2741942
http://forums.adobe.com/thread/858153?tstart=0
http://forums.adobe.com/thread/957816?tstart=0
http://www.hilfdirselbst.ch/gforum/gforum.cgi?post=540693#540693

Icon buttons (see also Appendix 1 in this guide)
http://forums.adobe.com/message/1111746#1111746
http://forums.adobe.com/message/2326630#2326630
http://forums.adobe.com/message/2899148#2899148

Scrollable panels
http://forums.adobe.com/message/2899148#2899148
http://indesign-faq.de/de/ScriptUI_scrollbar

Progress bar
https://forums.adobe.com/thread/2089372
http://forums.adobe.com/message/3152162#3152162
https://gist.github.com/966103

edittext
http://forums.adobe.com/thread/964339?tstart=0

http://www.davidebarranca.com/2012/10/scriptui-window-in-photoshop-palette-vs-dialog/
http://www.davidebarranca.com/2012/11/scriptui-bridgetalk-persistent-window-examples/
http://www.davidebarranca.com/2012/11/scriptui-bridgetalk-persistent-window-examples/
http://www.davidebarranca.com/2015/06/html-panel-tips-17-cc2015-survival-guide/
http://www.davidebarranca.com/2015/06/html-panel-tips-17-cc2015-survival-guide/
http://forums.adobe.com/community/indesign/indesign_scripting
http://forums.adobe.com/community/indesign/indesign_scripting
www.indiscripts.com
http://forums.adobe.com/message/2335096#2335096
http://forums.adobe.com/message/2280793#2280793
http://forums.adobe.com/message/2741942#2741942
http://forums.adobe.com/thread/858153?tstart=0
http://forums.adobe.com/thread/957816?tstart=0
http://forums.adobe.com/message/1111746#1111746
http://forums.adobe.com/message/2326630#2326630
http://forums.adobe.com/message/2899148#2899148
http://forums.adobe.com/message/2899148#2899148
http://indesign-faq.de/de/ScriptUI_scrollbar
http://forums.adobe.com/message/3152162#3152162
https://gist.github.com/966103
http://forums.adobe.com/thread/964339?tstart=0

123

fonts
http://www.indiscripts.com/post/2012/05/scriptui-fonts-facts

colour
https://forums.adobe.com/thread/2159810

Miscellaneous
http://forums.adobe.com/thread/1260079?tstart=0

Interactive dialog builders

Two dialog builders mentioned earlier – Rapid ScriptUI and ScriptUI Builder –
are no longer available. Slava Boyko’s excellent DialogBuilder is available at
https://github.com/SlavaBuck/DialogBuilder (it was last updated in August
2014).

A slightly different approach is David Van Brink’s Omino dialog builder.
This is not an interactive dialog builder like the three apps mentioned
above, but rather a kind of interface for ScriptUI. See http://omino.com/
pixelblog/2008/09/21/35/

Acknowledgements

I would like to thank Mark Francis of Adobe for sharing his knowledge of
ScriptUI and also the following people, most of whom are (or have been)
regulars in Adobe’s scripting forum: Marc Autret, Dirk Becker, Gabe Harbs,
Mikhail Ivanyushin, Uwe Laubender, Kasyan Servetsky, Bob Stucky, Marijan
Tompa, Vlad Vladila, and Ariel Walden for providing ScriptUI details and
examples.

Appendix 1: Embedding graphic files in a script

Earlier we saw that the following line adds an icon from a file to an iconbutton
in a window w:

w.add ("iconbutton", undefined, File ("/d/test/icon.png"));

In itself this is convenient, but you should really check if the icon file is present
and provide some alternative just in case the file can't be found. So it would be
convenient if we could embed those icons in the script – and we can.

The method outlined here was first described (to my knowledge) by Bob Stucky
in Adobe's scripting forum; see Some useful forum topics, below. The method
works for png, idrc, and jpg files; possibly for other formats as well, but I haven't
tried them.

http://www.indiscripts.com/post/2012/05/scriptui-fonts-facts
https://github.com/SlavaBuck/DialogBuilder
http://omino.com/pixelblog/2008/09/21/35/
http://omino.com/pixelblog/2008/09/21/35/

124

To embed a graphic in a script file we must convert the contents of the binary
file to a string. The following script does that:

var infile = File ("/d/test_jpg/icon.png");
var outfile = File ("/d/test_jpg/icon.txt");
infile.open ("r"); infile.encoding = "binary";
var temp = infile.read(); infile.close();
outfile.open ("w");
outfile.write (temp.toSource ());
outfile.close ();

This results in a text file with a single, usually very long, line, which has the
following form:

(new String(". . ."))

To use the string in a script, open the file in a plain text editor and strip (new
String(from the beginning and)) from the end. Copy the string (including the
quote marks) and paste it into the script, declaring it as a variable. This variable
is used in the script instead of a reference to a file object. Our earlier code would
then look as follows:

var myIcon = "/* very long string */";
var w = new Window ("dialog");
	 w.add ("iconbutton", undefined, myIcon);
w.show();

That's basically all there's to it. But the conversion script, above, is a bit unwieldy,
and I started using the following script, which is flexible in its input and strips
the unwanted overhead away from the converted string.

125

function graphic_to_text (infiles /*array of file objects*/)
	 {
	 var outfile, s,
		 re1 = /^\(new String\(/,
		 re2 = /\)\)$/;

	 for (var i = 0; i < infiles.length; i++)
		 {
		 if (infiles[i].exists)
			 {
			 outfile = File (infiles[i].fullName.replace (/\.(png|idrc)$/, '.txt'));
			 outfile.open ('w');
			 infiles[i].encoding = 'BINARY';
			 infiles[i].open('r');
			 s = infiles[i].read();
			 outfile.write('var ' + outfile.name.replace ('.txt', ' ') + ' = ');
			 outfile.write(s.toSource().replace(re1, ' ').replace(re2, ' '));
			 outfile.write(';');
			 infiles[i].close();
			 outfile.close();
			 }
		 }
	 }

The function's input is an array of file objects. Here are some examples:

graphic_to_text (Folder ("/d/test/").getFiles ("*.png"));
graphic_to_text ([File ("/d/test/iconA.png"), File ("/d/test/iconB.jpg")]);
graphic_to_text ([File ("/d/test/iconC.idrc")]);

The first example is correct since getFiles() returns an array of file objects. In the
second example, we name two files ; in the third example we want to convert
just one file, so we pass that in the form of a one-element array.

The converted graphics are written to files that use the same name as the
graphics, but with the extention .txt. Each output file consists of a single line.

Note: when you paste those long strings into a script file in the ESTK you'll
notice that the ESTK isn't particularly good at handling them. It may look as if
part of the string has disappeared in the ESTK, but don't let that worry you, it's
just a display problem.

126

Appendix 2: ESTK resource icons

The screenshot shows the ESTK resource icons. They can be used only when
a script targets the ESTK Toolkit. It is correct that some names have a # prefixed.
Names that end in _R have at least one more variant for different appearances.
For instance, #Pause_R will have incarnations #Pause_N and #Pause_O, which
define different appearances of the same image. See section State-sensitive
iconbuttons (p. 17) for details.

127

Changes in CC

ScriptUI has undergone several changes in the transition from CS6 to CC.
The most noticeable change is the appearance of the interface. The window
background is darker; buttons are less rounded; lists have row separators; nodes
in treeviews are now triangles – these are appearances only. Here is an example
that illustrates most of these changes: the darker background, different nodes,
rules between list items.

InDesign up to CC InDesign from CC

But there are also various changes in ScriptUI’s behaviour. I’ll list here the ones
I found, sometimes referring to the text for further examples. Since the list
reflects just what I encountered it's probably not complete.

– Palettes are now much better behaved. The focus problems that have dogged
palette-type windows so long appear to have been solved: if a palette is in
focus, keystrokes are sent to it rather than to the document window. This
manifests itself an several ways. The Tab key can be used to navigate a palette.
The standard Copy and Paste shortcuts (Ctrl+C and Ctrl+V on Windows) now
work as expected. If the Find/Change dialog is open, the Enter key is sent to the
ScriptUI palette, not to the Find/Change window.

– In multiselect lists, setting a list's selection now correctly shows all selected
items (or as many as possible) in the listbox's frame (see page 35 for details).

– The behaviour of stack alignment on Windows has changed so that it is now
like that on Mac OS: the object defined last is placed on top. This is the more
intuitive placement (see also p. 109).

128

– The display of resizing windows is much better now.

– In panels, the title aligns better with the border. In CS6 and earlier, the top
border aligned with the title’s x-height, which made it look as if the title was
placed too low. In CC the border aligns with the vertical centre of the x-height,
which looks much better.

But there are several problems, which we hope will be ironed out as CC gets
updated. Most of these problems are related to the display of various interface
elements, not with the operation of the dialogs. But these display problems are
severe (see the discussions on the Adobe scripting forum here and especially
here). They’ve confirmed by Adobe, and their fixes have been confirmed too.

– In a ScriptUI dialog, when you click a button of type iconbutton (which has the
properties style and toggle set), the button changes appearance. On a second
click, the appearance should change back to its original state, but in CC this
does not happen.

– Typeface and type size can’t be changed.

– The behaviour of revealItem() and/or selecting a list item has changed in
two ways. In CC they must be called by myWindow.onShow, and the selected/
revealed item appears at the top of the list box rather than at the bottom (as in
CS6 and earlier).

– The double-click event handler doesn’t work. This applies only to custom
handlers. The built-in .onDoubleClick does work.

– The edittext control’s enterKeySignalsOnChange property stopped working.

– Not strictly speaking a ScriptUI problem: in AfterEffects and in Illustrator, event
listeners can no longer be used: .addEventListener() doesn't work.

In general, scripts that use tweaks to ScriptUI’s behaviour that required digging
into ScriptUI’s resources suffer the most. Marc Autret’s scripts are probably the
worst victims.

Changes in CC2015

Davide Barranca mentioned that in CC2015 the rendering engine of ScriptUI
windows was changed from Flash to Mondo. This affects PhotoShop badly,
introducing new bugs and dropping features. For example, treeviews and
listboxes are not longer available, and JPG images can no longer be used. See
https://forums.adobe.com/thread/1871451?start=40&tstart=0 for a series of
posts that make depressing reading.

http://forums.adobe.com/thread/1235963?tstart=30
http://forums.adobe.com/thread/1235394?tstart=0
https://forums.adobe.com/thread/1871451?start=40&tstart=0

129

In CC2015, the way that image offsets are calculated and/or effected has
changed so that scripts that deal with absolute displacements get it wrong.

The edittext property active must now be set in an onShow callback.

130

Revision details – version 2.13
–	 Added a not to say that to make active work again in CC it needs to be set in an

onShow callback (p. 5).
–	 Added an example of how to filter list boxes using a regular expression (p. 43).
–	 At the existing note on the interaction of app.scriptPreferences.enableRedraw

and progress bars, added a link to Ariel Walden’s overview (p. 66).
–	 Simplified the script to deal with differences in stack orientations (p. 48).
–	 Corrected the script that shows how to order controls in a stack-oriented panel

or group (p. 110).
–	 Added a note to say that the flashplayer control was discontinued in CC2017.

131

Index

Note: Blue page numbers refer to text in
a sidenote

ActionScript
and Flash  73

active  5–6, 129
AfterEffects  2, 9

.addEventListener()  23
CC  23, 128

Aigon, Loïc  73, 121
alert()

native  13
scripted, scrollable  13

alignChildren  20, 112
alignment  111–12

in edittext controls  12, 70
in a group  7
in a window  7

anonymous function  3
application icons  18–19

ExtendScript Toolkit  19
file formats  19
InDesign  19
Photoshop  18

Autret, Marc
blog  121, 122
CC scripts  128
on fixing listbox display problems  45
on font names  86
on image resizing  69
on the layout manager  114
on onResize  113
on sprites  102
on progress bars  67
on scrollbars  71

Barranca, Davide  3, 67, 121–2, 128
Becker, Dirk  19, 89
borderless  See window
bounds  107
Boyko, Slava  123
Bridge  121
button

default action  14
style  17
toggle  17
toolbutton  16

callback  15–16
combining  15
and event handler  94
in a loop  92

CC2017  74

characters  11
checkbox

spacing problem  20
three-state  102–5
value  21

checkmark
on list items  37

children  See group; panel
clientX  94
clientY  94
closeButton  See Window
colour  88–9
columnWidths  38
control

add/remove dynamically  79–81
finding  84–5
labelling  81–2
measurement  74–6
text alignment  111–12
title  78–9
visibility  64

creation properties  10
in resource strings  118–19

custom properties  49

dialog builders
DialogBuilder  123
Omino  123
Rapid ScriptUI  123
ScriptUI Builder  123

dropdown

combine with edit field  47–9
create on the fly  48–9
and event handlers  99
images  46
select as you type  97–100
selection  46
separator  46–7

edittext  4, 11–14, 100
activating  5
alignment  12
characters  5
copy/paste  12
display problem in Windows  12
in dropdowns  47
Enter/Return key  12
in ExtendScript ToolKit  12
incrementing numeric values  96
justify  70
limitations  12, 96
multiline  11–12
noecho  12

numeric input  96
numerical input  96
onChange  91
in PhotoShop  12
readonly  12
scrollbar  11, 70
scrolling  11
size  5
validation  100–1
wantReturn  12

enterKeySignalsOnChange  41
in CC  128

ESTK  See ExtendScript ToolKit
event handler

and callback  94
Mac vs. Windows  98
problem with event handler

on Macs  99
event listener  81

keydown  95
problem in CC  128
target  95

ExtendScript ToolKit
application icons  19
edittext  12

.find()
listbox  28
Window  82–5

.findElement()  85, 116
finding a control  85
flashplayer  73–4
focus problems in palettes  127
fonts  86–8

in CC  128
default type size  86
names  87–8
style names  87
substitutes  87
type size  86–7

frameBounds  107

group

children  21–2
scrolling  72

Harbs, Gabe  47, 63
helpTip  92

iconbutton  16–20
in CC  128
image  16
problems in CC  128

state-sensitive  17–18
style  17
toggle  17
See also button

icons
application icons  18–19
embedding in script  123–5
file formats  16
resource icons  126
in treeviews  51
See also image

idrc  19, 123
Illustrator

.addEventListener()  23
CC  23, 128
panel appearance  9
target engine  2

Illy  See Illustrator
image

in icon buttons  16
offset problems in CC2015  129
scaling  69
See also dropdown; icons; listbox;

Photoshop; treeview

Jongware  121
.jpg  123
jumpdelta  See scrollbar
justification  See alignment
justify  11

keyboard  95–100
arrow keys  96–7
keydown  95–7
type-ahead functions  97–100

keyboard event  95
keydown  See keyboard

label
see control  81

.layout  12, 113
layout manager  105, 106, 114
.layout()  12
lines  See rules
listbox

adding items  24, 29
avoid duplicate items  29
create on the fly  48–9
determine selection  25, 27
display problem in CS6/

Windows 10  24
display problems in CC  44–5
filtering  40–1

finding items  28
fitting on screen  108
handling long lists  43
images  37
index  26
listItem  26
move items  30–1
multi-column  38–9

display problem in CS6/
Windows 10  38

Illustrator problem  38
table  39

multi-select  24–5, 27, 34, 68, 127
multiselection  24
onChange  92
processing long lists  43–4
processing selection  27
remove item  34
scrollbar  70
selected item  25–6
selection  28–9
selection, forcing  26–7
separator  46
sorting  29–30
type-ahead  40–3
Windows 10 display problem with

CS6  38
listItem  See listbox
location  106

Mac OS
dropdown list  99
event handlers  98, 99
location of icons  19
OS differences  4, 122
resizable windows  113
stack order  47, 109–110
vertical scrollbar  66–7
vertical slider  70

margins  10, 110
ordered array  110

maximumSize  108, 109
measurement input  13, 14, 74–6, 96–7
'milligram'  89, 121
minimumSize  109
modal vs. non-modal  1
Mondo rendering engine  67, 128
mouse

click detection  94–5
mouse events  94
multiline

edittext  11
statictext  11

132

no-echo text field  12–13
node  See treeview
.notify()  76
numeric input  13

Omino dialog builder  123
onChange  25, 26, 41, 47, 91

See also edittext
onChanging  41, 69
onClick  15, 16, 76, 91
onDoubleClick  92
onResize  113

Mac  113
onResizing  113
onShow  16, 35
orientation  109–110

change dynamically  114
group  6
panel  6
window  5

palette
inside a function  2–3

panel

border style  9
children  21
scrolling  72
used for rules  89

password
masked  13

Perplies, Werner  24
persistent engine  85, 86
persistent windows

in Bridge  122
in PhotoShop  122

Photoshop  9, 121
application icons  18
CC2015  128
edittext  12
image format restrictions in CC

2015  67
palette  3
persistent windows  122
problems with PNG files  19
sliders  70

.png  19, 123
preferredSize  106, 109, 119

formats  106–1
single value in resource strings  118

progress indicator
display counters  68

progressbar

and app.scriptPreferences.
enableRedraw  66

lists  67

orientation  66
vertical  66

prompt  See control title

radiobutton  21–4
finding the selected button  21
multiple groups  23
scope  22, 23
select as child  21

Rapid ScriptUI  123
read-only text field  12
regular expression  42–3
rendering engine

CC2015  128
resize

columns in multi-select lists  38
images  69
problem in Windows 8.1  113

.resize()  113
resizeable  93, 113
resource string  11, 115–16

creation properties  118
revealItem()  34–6

in CC  35, 128
rules  89–91

screen size  See $.screens
$.screens  109
ScriptUI Builder  123
scrollbar  See edittext
scrollbar  70–3

jumpdelta  72
orientation  71
stepdelta  72
value  71–2

scrolling  11
alert  13
panels  72

selection  See dropdown; listbox
Servetsky, Kasyan  52
shortcut keys  77
.show()  8
Singelmann, Gerald  79, 121
size  106

different format  106
SlavaBuck  See Boyko, Slava
slider

maxvalue  118
minvalue  118
negative values  70
value  118
vertical orientation  70

spacing  110
sprite  45, 102

stack alignment  47, 48, 64
Mac vs Windows  47, 109
Windows  127

stack  109–110
statictext  4, 10–11

alignment  11
justify  11
multiline  11

stepdata  See scrollbar
Stucky, Bob  14, 71, 100, 121
style groups

in list boxes  49
in treeviews  54

tab key
in palettes  2

tabbedpanel  63
vertically aligned tabs  64–6

table  39
See also listbox, multi-column

#targetengine  85
AfterEffects  2
Illustrator  2

3-state checkbox  See checkbox
three-state checkbox  See checkbox
titleLayout  78
toggle  See button
Tompa, Marijan  121
toolbutton  See button
treeview

adding items  60–1
create on the fly  54–5
expand all nodes  51–2
expand non-terminal node after

inserting an item  61
expanded  50, 51, 61
export tree  61–3
find items  55
move nodes  56–9
remove items  59–60
traversing a tree  55–6

type-ahead  See keyboard; listbox

validation  See edittext
value  See checkbox; radiobutton;

scrollbar

viewport  72, 102
visible  64
Vladila, Vlad  26, 72

Walden, Ariel  66
wantReturn  See edittext
width  119

Window

borderless  9
closeButton  9
frame  9–10
margins  9
orientation  5, 114
OS differences  4
position of title  5
resize dynamically  114
type window  1

Windows
appearance of dialog and

palette  2
icon location  19
lack of vertical progress bar  66
list display problem in Windows 10  45
resize problem in Windows 8.1  113
stack order  47, 109

Windows 10
listbox display in CS6  24
multi-column listbox display in

CS6  38

Xavier  89

133

	Hello world
	Types of window
	Dialog
	Palette
	Palettes inside functions

	Differences across applications
	Differences accross operating systems

	Adding controls
	Getting started: An example
	Groups and panels
	Formatting the window frame
	Panel border styles

	Creation properties and other properties
	Controls
	statictext@
	edittext@
	Read-only
	No-echo
	Example: scrollable alert
	Controlling edit fields

	button@
	Push buttons
	Responding to button presses
	Icon buttons
	State-sensitive icon buttons
	Using application icons
	Using InDesign's icons

	checkbox@
	radiobutton@
	Make multiple groups act as one group

	listbox@
	Finding out which item is selected
	Forcing a list selection
	Finding out which item is selected in multi-select lists
	Processing lists
	Finding items in a list
	Using find() to make selections in a list
	Inserting items into a list
	Keeping a list sorted
	Moving list items (single-selection lists)
	Moving list items (multi-selection lists)
	Removing items from a list
	Removing items from a multi-selection list
	Selecting vs. revealing items
	Including images in a list
	Adding checkmarks
	Multi-column lists
	Tables
	Type-ahead lists: select while you type
	Processing long lists
	Fixing display problems in listbox controls

	dropdownlist@
	Separators
	Edit fields with dropdowns
	Creating lists on the fly

	treeview@
	Images in treeviews
	Expanding all nodes and their subnodes
	Creating a tree on the fly
	Finding and highlighting items in a tree
	Moving items and nodes: processing treeviews
	Removing items and nodes from treeviews
	Adding items to a treeview
	Writing a treeview as XML

	tabbedpanel@
	Vertical tabs

	progressbar@
	Lists as progress indicators
	Counters as progress indicators

	image@
	Resizing images

	slider@
	scrollbar@
	The scrollbar’s value
	stepdelta@
	jumpdelta@
	Scrolling panels and groups

	flashplayer@

	Measurement control
	Simulating keypresses
	Adding shortcut keys to controls
	Control titles
	Adding and removing controls dynamically
	Labelling controls
	Finding windows
	Finding controls

	Closing windows
	Fonts
	Colours
	Rules
	Callbacks
	Adding callbacks in loops

	Event handlers
	Monitoring the mouse
	Determining which button is pressed

	Listening to the keyboard
	Using the up and down arrow keys to change numerical data
	Selecting items in dropdowns using the keyboard

	Validating input
	Three-state checkboxes: Sprites
	Size and location
	Size
	Location
	Bounds
	Maximum size
	Minimum size
	Orientation
	Margins and spacing
	alignment@
	alignChildren@

	Resizing windows
	Coding styles: resource string and code based
	Resource string
	Code-based object
	Mixing styles
	Creation properties
	Setting the size of controls

	Displaying properties and methods
	Resources
	Blogs
	Useful forum topics
	Interactive dialog builders

	Appendix 1: Embedding graphic files in a script
	Appendix 2: ESTK resource icons
	Changes in CC
	Changes in CC2015
	Revision details – version 2.13
	Index

